Carbon Dioxide, Heat, and Water Vapor Fluxes between a Spruce Forest and the Atmosphere in Northeastern European Russia


This article presents the measurement results of CO2 and heat fluxes using the eddy covariance system between an old-age spruce forest and the atmosphere. It further examines daily and seasonal courses of CO2 net exchange, ecosystem respiration, and gross photosynthesis. A close relationship has been established between the average daily CO2 net exchange and net radiation over the course of a year. The efficiency of water use relative to organic matter production in the spruce forest has been calculated.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    Alekseychik, P., Lappalainen, H., Petaja, T., Zaitseva, N., Heimann, M., Laurila, T., Lihavainen, H., Asmi, E., Arshinov, M., Shevchenko, V., Makshtas, A., Dubtsov, S., Mikhailov, E., Lapshina, E., Kirpotin, S., Kurbatova, Yu., Ding, A., Guo, H., Park, S., Lavric, J., Reum, F., Panov, A., Prokushkin, A., and Kulmala, M., Ground-based station network in Arctic and Subarctic Eurasia: an overview, Geogr. Envir. Sustain., 2016, vol. 9, no. 2, pp. 75–81.

    Article  Google Scholar 

  2. 2

    Amiro, B.D., Barr, A.G., Black, T.A., Iwashita, H., Kljun, N., McCaughey, J.H., Morgenstern, K., Murayama, S., Nesic, Z., Orchansky, A.L., and Saigusa, N., Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada, Agricult. Forest Meteorol., 2006, vol. 136, pp. 237–251.

    Article  Google Scholar 

  3. 3

    Arneth, A., Veenendaal, E., Best, C., Timmermans, W., Kolle, O., Montagnani, L., and Shibistova, O., Water use strategies and ecosystem-atmosphere exchange of CO2 in two highly seasonal environments, Biogeosciences, 2006, vol. 3, pp. 421–437.

    CAS  Article  Google Scholar 

  4. 4

    Baldocchi, D.D., Hincks, B.B., and Meyers, T.P., Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 1988, vol. 69, no. 5, pp. 1331–1340.

    Article  Google Scholar 

  5. 5

    Baldocchi, D., Kelliher, F., Black, T., and Jarvis, P., Climate and vegetation controls on boreal zone energy exchange, Glob. Change Biol., 2000, vol. 6, suppl. 1, pp. 69‒83.

    Article  Google Scholar 

  6. 6

    Barr, A., Black, T., Hogg, E., Griffits, T., Morgenstern, K., Kljun, N., Theede, A., and Nesic, Z., Climatic control on the carbon and water balances of boreal aspen forest, 1994–2003, Glob. Change Biol., 2007, vol. 13, pp. 561–576.

    Article  Google Scholar 

  7. 7

    Bartalev, S.A., Khovratovich, T.S., and Elsakov, V.V., The use of satellite images to estimate carbon losses by forest ecosystem as a result of cuttings, Sovrem. Probl. Distants. Zond. Zemli Kosmosa, 2009, vol. 6, no. 2, pp. 343–351.

    Google Scholar 

  8. 8

    Bioproduktsionnyi protsess v lesnykh ekosistemakh Severa (Biological Production Processes in the Forest Ecosystems of the North), St. Petersburg: Nauka, 2001.

  9. 9

    Bronson, D. and Gower, S., Ecosystem warming does not affect photosynthesis or aboveground autotrophic respiration for boreal black spruce, Tree Physiol., 2010, vol. 30, pp. 441–449.

    CAS  Article  Google Scholar 

  10. 10

    Brummer, Ch., Black, T.A., Jassal, R., Grant, N., Spittlehouse, D., Chen, B., Nesic, Z., Amiro, B., Arain, M.A., Barr, A., Bourque, Ch., Coursolle, C., Dunn, A., Flanagan, L.B., Humphreys, E., Lafleur, P., Margolis, H., McCoughey, J.H., and Wofsy, S., How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems, Agricult. Forest Meteorol., 2012, vol. 153, pp. 14–30.

    Article  Google Scholar 

  11. 11

    Dolman, A.J., Shvidenko, A., Schepachenko, D., Ciais, P., Tchebakova, N., Chen, T., van der Molen, M.K., Belelli Marchesini, L., Maximov, T., Maksyutov, S., and Shulze, E.-D., An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods, Biogeosciences, 2012, vol. 9, p. 5323.

    CAS  Article  Google Scholar 

  12. 12

    Drozdov, S.N. and Kurets, V.K., Nekotorye aspekty ekologicheskoi fiziologii rastenii (Some Aspects of Ecological Plant Physiology), Petrozavodsk: Petrozavodsk. Gos. Univ., 2003.

  13. 13

    Foken, Th. and Wichura, B., Tools for quality assessment of surface-based flux measurements, Agricult. Forest Meteorol., 1996, vol. 78, pp. 83–105.

    Article  Google Scholar 

  14. 14

    Galenko, E.P., Fitoklimat i energeticheskie faktory produktivnosti khvoinogo lesa Evropeiskogo Severa (Phytoclimate and Energy Factors of Productivity of a Coniferous Forest of the European North), Leningrad: Nauka, 1983.

  15. 15

    Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A.Z., and Schepaschenko, D.G., Boreal forest health and global change, Science, 2015, vol. 349, pp. 819–822.

    CAS  Article  Google Scholar 

  16. 16

    Goulden, M., Wofsy, S., Harden, J., Trumbore, S., Crill, P., Gower, S., Fires, T., Daube, B., Fan, S.-M., Sutton, D., Bazzaz, A., and Munger, J., Sensitivity of boreal forest carbon balance to soil thaw, Science, 1998, vol. 279, pp. 214–217.

    CAS  Article  Google Scholar 

  17. 17

    Hollinger, D.Y., Golts, S.M., Davidson, E.A., Lee, J.T., Tu, K., and Valentine, H.T., Seasonal patterns and environmental controls of carbon dioxide and water vapor exchange in an ecotonal boreal forest, Glob. Change Biol., 1999, vol. 5, pp. 891–902.

    Article  Google Scholar 

  18. 18

    Hollinger, D.Y., Aber, J., Dail, B., Davidson, E.A., Goltz, S.M., Hughes, H., Leclerc, M.Y., Lee, J.T., Richardson, A.D., Rodrigues, C., Scott, N.A., Achuatavarier, D., and Walsh, J., Spatial and temporal variability in forest-atmosphere CO2 exchange, Glob. Change Biol., 2004, vol. 10, pp. 1689–1706.

    Article  Google Scholar 

  19. 19

    Kasurinen, V., Alfredsen, K., Kolari, P., Mammarella, I., Alekseychik, P., Rinne, J., Vesala, T., Bernier, P., Boike, J., Langer, M., Bellelli Marshesini, L., Huisstened, K.V., Dolman, H., Sachs, T., Ohta, T., Varlagin, A., Rocha, A., Arain, A., Oechel, W., Lund, M., Grelle, A., Lindroth, A., Black, A., Aurela, M., Laurila, T., Lohila, A., and Berninger, F., Latent heat exchange in the boreal and arctic biomes, Glob. Change Biol., 2014, vol. 20, pp. 3439–3456.

    Article  Google Scholar 

  20. 20

    Korennye elovye lesa Severa: bioraznoobrazie, struktura, funktsii (Primary Spruce Forests of the North: Biodiversity, Structure, and Function), St. Petersburg: Nauka, 2006.

  21. 21

    Kutzbach, L., Wille, C., and Pfeiffer, E.-M., The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia, Biogeosciences, 2007, vol. 4, no. 5, pp. 869–890.

    CAS  Article  Google Scholar 

  22. 22

    Kuznetsov, M.A., Dynamics of organic carbon content in swampy spruce forest of the middle taiga, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Syktyvkar: Inst. Biol., Komi Nauchn. Tsentr, Ural. Otd., Ross. Akad. Nauk, 2010.

  23. 23

    Lafleur, P.M., Growing season energy and CO2 exchange at a subarctic boreal woodland, J. Geophys. Res. Atm., 1999, vol. 104, рр. 9571‒9580.

  24. 24

    Launianen, S., Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest, Biogeosciences, 2010, vol. 7, pp. 3921–3940.

    Article  Google Scholar 

  25. 25

    Martynyuk, Z.P., Bobkova, K.S., and Tuzhilkina, V.V., Carbon balance in a coniferous phytocenosis, Russ. J. Plant Physiol., 1998, vol. 45, no. 6, pp. 794–798.

    CAS  Google Scholar 

  26. 26

    McCaughey, J.H., Pejam, M.R., Arain, M.A., and Cameron, D.A., Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada, Agricult. Forest Meteorol., 2006, vol. 140, pp. 79–96.

    Article  Google Scholar 

  27. 27

    Ol’chev, A.V., Kurbatova, Yu.A., Tatarinov, F.A., Molchanov, A.G., Varlagin, A.V., Gorshkov, I.I., and Vygodskaya, N.N., Estimation of primary gross and net productivity of spruce forests of the Central European part of Russia by using field measurements and mathematical model, Usp. Sovrem. Biol., 2009, vol. 129, no. 6, pp. 565–578.

    Google Scholar 

  28. 28

    Pavlov, A.V., Energoobmen v landshaftnoi sfere Zemli (Energy Exchange in the Landscape Sphere of the Earth), Novosibirsk: Nauka, 1984.

  29. 29

    Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., Margolis, H., Fang, J., Barr, A., Chen, A., Grelle, A., Holliger, D., Laurila, T., Lindroth, A., Richardson, A., and Vesala, T., Net carbon dioxide losses of northern ecosystems in response to autumn warming, Nature, 2008, no. 456, pp. 49–52.

  30. 30

    Sen’kina, S.N., Bioproduction indicators of moisture exchange of pine and spruce in coniferous plant communities of the middle taiga, Khvoin. Boreal.Zony, 2013, vol. 31, nos. 3–4, pp. 71–75.

    Google Scholar 

  31. 31

    Sevanto, S., Suni, T., Pumpanen, L., Gronholm, T., Kolari, P., Nikinmaa, E., Hari, P., and Vesala, T., Wintertime photosynthesis and water uptake in boreal forest, Tree Physiol., 2006, vol. 26, pp. 749–757.

    Article  Google Scholar 

  32. 32

    Shvidenko, A.Z. and Shchepachenko, D.G., Carbon budget of forests of Russia, Sib. Lesn. Zh., 2014, no. 1, pp. 69–92.

  33. 33

    Suni, T., Berninger, F., Vesala, T., Markkanen, T., Hari, P., Makela, A., Ilvesniemi, H., Hanninen, H., Nikinmaa, E., Lindroth, A., Arneth, A., Shibistova, O., and Lloid, J., Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring, Glob. Change Biol., 2003, vol. 9, pp. 1410–1426.

    Article  Google Scholar 

  34. 34

    Tchebakova, N.M., Vygodskaya, N.N., Arneth, A., Belelli Marchesini, L., Kolle, O., Kurbatova, Yu.A., Parfenova, E.I., Valentini, R., Vaganov, E.A., and Schulze, E.-D., Energy and mass exchange and the productivity of main Siberian ecosystems (from eddy covariance measurements). 1. Heat balance structure over the vegetation season, Biol. Bull. (Moscow), 2015, vol. 42, no. 6, pp. 570–578.

    Article  Google Scholar 

  35. 35

    Tchebakova, N.M., Vygodskaya, N.N., Arneth, A., Belelli, Marchesini, L., Kurbatova, Yu.A., Parfenova, E.I., Valentini, R., Verkhovets, S.V., Vaganov, E.A., and Schulze, E.-D, Energy and mass exchange and the productivity of main Siberian ecosystems (from eddy covariance measurements). 2. Carbon Exchange and Productivity, Biol. Bull. (Moscow), 2016, vol. 42, no. 6, pp. 579–588.

    Article  Google Scholar 

  36. 36

    Ueyama, M., Iwata, H., and Harazono, Y., Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska on a nine-year eddy covariance measurement, Glob. Change Biol., 2014, vol. 20, pp. 1161–1173.

    Article  Google Scholar 

  37. 37

    Zamolodchikov, D., Karelin, D., Ivaschenko, A., Oechel, W., and Hastings, S., CO2 flux measurements in Russian Far East tundra using eddy covariance and closed chamber techniques, Tellus, 2003, no. 55B, pp. 879–892.

  38. 38

    Zamolodchikov, D.G., Gitarskii, M.L., Shilkin, A.V., Marunich, A.S., Karelin, D.V., Blinov, V.G., and Ivashchenko, A.I., Monitoring carbon dioxide and water vapor cycles in the Log Taezhnyi test plot (Valdai National Park), Fundam. Prikl. Klimatol., 2017, vol. 1, pp. 54–68.

    Google Scholar 

Download references


This work was supported as part of a Complex Program for Basic Research of the Ural Branch, Russian Academy of Sciences, for 2018–2020, subprogram Live Nature and Climate, project no. 18-4-4-17.

Author information



Corresponding author

Correspondence to S. V. Zagirova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zagirova, S.V., Mikhaylov, O.A. & Elsakov, V.V. Carbon Dioxide, Heat, and Water Vapor Fluxes between a Spruce Forest and the Atmosphere in Northeastern European Russia. Biol Bull Russ Acad Sci 47, 306–317 (2020).

Download citation