Skip to main content
Log in

Accumulation of Phenolic Compounds at the Initial Steps of Ontogenesis of Fagopyrum esculentum Plants That Differ in Their Ploidy Levels

  • Plant Physiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Plants of buckwheat Fagopyrum esculentum possessing diploid and tetraploid genotypes were studied at the initial ontogenetic stages. They were compared in their morphophysiological characteristics, accumulation of phenolic compounds (including their main classes—phenylpropanoids and flavonoids), and activity of L-phenylalanine ammonia-lyase. An apparent resemblance in morphophysiological characteristics of seedlings was found between the two specimens, but diploid plants tended to faster linear growth than tetraploid ones. Differences in the accumulation of phenolic compounds in the hypocotyl and cotyledonous leaves were revealed. In most cases, in the course of seedling growth, the changes in phenylalanine ammonialyase activity did not correlate with the changes in the levels of these secondary metabolites. The effects of gene dosage were established towards accumulation of phenylpropanoids and anthocyanins in hypocotyls of seedlings and flavonoid accumulation in cotyledonous leaves. It is concluded that buckwheat seedlings with a tetraploid genotype have higher capacity than diploid seedlings for biosynthesis of phenolics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah, S.B., Rabhi, M., Harbaoui, F., Zar-kalai, F., Lacha, M., and Karray-Bouraoui, N., Distribution of phenolic compounds and antioxidant activity between young and old leaves of Carthamus tinctorius L. and their induction by salt stress, Acta Physiol. Plant., 2013, vol. 35, pp. 1161–1169.

    Article  Google Scholar 

  • Amelin, A.V., Fesenko, A.N., and Zaikin, V.V., Features of the initial linear growth of the stem and root in buckwheat cultivars at different breeding stages, Zernobobovye Krupyanye Kul’tury, 2013, no. 2 (6), pp. 91–96.

    Google Scholar 

  • Bidel, L.P.R., Coumans, M., Baissac, Y., Baissac, Y., Doumas, P., and Jay-Allemand, C., Biological activity in plant cells, in Recent Advances in Polyphenol Research, Santos-Buelga, C., Escribano-Bailon, M., and Lattanzio, V., Eds., Oxford, United Kingdom, 2010, vol. 2, pp. 163–205.

    Article  CAS  Google Scholar 

  • Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brillouet, J.-M., On the role of chloroplasts in the polymerization of tannins in tracheophyta, Am. J. Plant Sci., 2015, vol. 6, pp. 1401–1409.

    Article  CAS  Google Scholar 

  • Brouillard, R., Chassaing, S., Isorez, G., Kueny-Stotz, M., and Figueiredo, P., The visible flavonoidsor anthocyanins: from research to applications, in Recent Advances in Polyphenol Research, Santos-Buelga, C., Escribano-Bailon, M., and Lattanzio, V., Eds., Oxford: United Kindom, 2010, vol. 2, pp. 1–22.

    CAS  Google Scholar 

  • Chacon, I., Riley-Saldana, C., and Gonzalez-Esquinca, A., Secondary metabolites during early development in plants, Phytochem. Rev., 2013, vol. 12, pp. 47–64.

    Article  Google Scholar 

  • Charpin, N. and Ellis, B.E., Microspectrophotometric evaluation of rosmarinic acid accumulation in single cultured plant cells, Can. J. Bot., 1984, vol. 62, pp. 2278–2281.

    Article  Google Scholar 

  • Cheynier, V., Comte, G., Davis, K.M., Lattanzio, V., and Martens, S., Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology, Plant Phys. Biochem., 2013, vol. 72, pp. 1–20.

    Article  CAS  Google Scholar 

  • Dixon, R.A. and Paiva, N.L., Stress-induced phenylpropanoid metabolism, Plant Cell, 1995, vol. 7, pp. 1085–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage, T.B. and Wendei, S.H., Quantitative determination of certain flavonol-3-glycosides, Anal. Chem., 1950, vol. 22, pp. 708–711.

    Article  CAS  Google Scholar 

  • Higuchi, T., Lignin biochemistry: biosynthesis and biodegradation, Wood Sci. Technol., 1990, vol. 24, pp. 23–63.

    Article  CAS  Google Scholar 

  • Isachkin, A.V., Solov’ev, A.A., Khanbabaeva, O.E., Bogdanova, V.D., and Zarenkova, E.G., Study of the effect of treatment with aqueous colchicine solution on changes in traits in two garden groups of snapdragon (Antirrhinum majus L.), Izv. Timiryazevsk. S.-Kh. Akad., 2014, no. 4, pp. 5–17.

    Google Scholar 

  • Jong, F., Hanley, S.J., Beale, M.N., and Karp, A., Characterization on the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar, Phytochemistry, 2015, vol. 112, pp. 90–97.

    Article  Google Scholar 

  • Khlestkina, E.K., Genes that determine the color of different organs of wheat, Vavilov. Zh. Genet. Selekts., 2012, vol. 16, pp. 202–216.

    Google Scholar 

  • Klejdus, B., Kovácik, J., and Babula, P., PAL inhibitor evokes different responses in two Hypericum species, Plant Physiol. Biochem., 2013, vol. 63, pp. 82–88.

    Article  CAS  PubMed  Google Scholar 

  • Koyama, M., Nakamura, C., and Nakamura, K., Changes in phenols contents from buckwheat sprouts during growth stage, J. Food Sci. Technol., 2013, vol. 50, no. 1, pp. 86–93.

    Article  CAS  PubMed  Google Scholar 

  • Kurkin, V.A., Farmakognoziya (Pharmacognosy), Samara: Ofort, 2007.

    Google Scholar 

  • Kurkin, V.A. and Vel’myaikina, E.I., Development of methods of qualitative and quantitative analysis of Echinacea purpurea syrup, Farmatsiya, 2011, no. 7, pp. 10–12.

    Google Scholar 

  • Li, X., Kim, J.K., Park, S.-Y., Zhao, S., Kim, J.B., Lee, S., and Pak, S.U., Comparative analysis of flavonoids and polar metabolite profiling of tanno-original and tanno-high rutin buckwheat, J. Agric. Food Chem., 2014, vol. 62, pp. 2701–2708.

    Article  CAS  PubMed  Google Scholar 

  • Manzhulin, A.V., Makovetskii, A.F., Terent’eva, E.V., and Voronin, P.Yu., The relationship between the mesostructure and photosynthetic activity of leaves in di- and tetraploid buckwheat genotypes, Fiziol. Rast., 1991, vol. 38, pp. 457–464.

    Google Scholar 

  • Marakaev, O.A., Celebrowsky, M.V., Nikolaeva, T.N., and Zagoskina, N.V., Some aspects of underground organs of spotleaf Orchis growth and phenolic compounds accumulation at the generative stage of ontogenesis, Biol. Bull. (Moscow), 2013, vol. 40, no. 3, pp. 281–289.

    Article  CAS  Google Scholar 

  • Margna, U.V., Vzaimosvyaz’ biosinteza flavonoidov s pervichnym metabolizmom rastenii (Correlation of Flavonoid Biosynthesis with Primary Plant Metabolism), Itogi nauki i tekhniki, Ser. Biol. Khim. (Advances in Science and Technology, Ser. Biol. Chem.), Moscow: VINITI AN SSSR, 1990, vol. 33.

  • Martynenko, G.E., Fesenko, N.V., Fesenko, A.N., and Gurinovich, I.A., Creating a cold-resistant determinant buckwheat cultivar Devyatka, Vestn. OrelGAU, 2010, no. 4, pp. 85–87.

    Google Scholar 

  • Mokronosov, A.T., Fotosinteticheskaya funktsiya i tselostnost’ rastitel’nogo organizma (The Photosynthetic Function and Integrity of Plant), 42-e Timiryazevskoe chtenie (The 42nd Timiryazev Memorial Lectures), Moscow: Nauka, 1983.

    Google Scholar 

  • Murav’eva, D.A., Bubenchikova, V.N., and Belikov, V.V., Spectrophotometric determination of the sum of anthocyanins in the flowers of blue cornflower, Farmakologiya, 1987, vol. 36, pp. 28–29.

    Google Scholar 

  • Nosov, A.M., Secondary metabolism, in Fiziologiya rastenii (Plant Physiology), Ermakov, I.P., Ed., Moscow: Akademiya, 2005, pp. 588–620.

  • Olenichenko, N.A. and Zagoskina, N.V., Response of winter wheat to cold: production of phenolic compounds and L-phenylalanine ammonia lyase activity, Appl. Biochem. Microbiol., 2005, vol. 41, pp. 600–603.

    Article  CAS  Google Scholar 

  • Olsen, K.M., Lea, U.S., Slimestad, R., Verheul, M., and Lillo, C., Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis, Plant Physiol., 2008, vol. 165, pp. 1491–1499.

    Article  CAS  Google Scholar 

  • Oomah, B.D. and Mazza, G., Flavonoids and antioxidative activities in buckwheat, J. Agric. Food Chem., 1996, vol. 44, pp. 1746–1750.

    Article  CAS  Google Scholar 

  • Polekhina, N.N. and Pavlovskaya, N.E., Dynamics of accumulation of biochemical compounds with antioxidant activity in various buckwheat organs during ontogenesis, Fundam. Issled., 2013, no. 10, pp. 357–361.

    Google Scholar 

  • Rat’kin, A.V., Zaprometov, M.N., Andreev, V.S., and Evdokimova, L.I., Study of biosynthesis of anthocyanidins and flavonols in flowers of sweet pea (Lathyrus odoratus L.), Zh. Obshch. Biol., 1980, vol. 41, pp. 685–699.

    Google Scholar 

  • Rogozhin, V.V. and Rogozhina, T.V., Praktikum po fiziologii i biokhimii rastenii (A Practical Course in Plant Physiology and Biochemistry), St. Petersburg: Giord, 2013.

    Google Scholar 

  • Sakharov, B.B., Frolova, S.L., and Mansurova, V.V., Tetraploidy in cultural buckwheat (Fagopyrum esculentum), Dokl. Akad. Nauk SSSR, 1944, vol. 43, pp. 223–227.

    Google Scholar 

  • Sanwal, S.K., Rai, N., Singh, J., and Buragohain, J., Antioxidant phytochemicals and gingerol content in diploid and tetraploid clones of ginger (Zingiber officinale Roscoe), Sci. Horticult., 2010, vol. 124, pp. 280–285.

    Article  CAS  Google Scholar 

  • Shipilova, S.V. and Zaprometov, M.N., Phenylalanine ammonia-lyase and formation of catechins in the tea plant, Fiziol. Rast., 1977, vol. 24, pp. 803–809.

    CAS  Google Scholar 

  • Tarakhovskii, Yu.S., Kim, Yu.A., Abdrasilov, B.S., and Muzafarov, E.N., Flavonoidy: biokhimiya, biofizika, meditsina (Flavonoids: Biochemistry, Biophysics, and Medicine), Moscow: Pushchino, 2013.

    Google Scholar 

  • Tuominen, A., Defensive strategies in Geranium sylvaticum. Pt 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies, Phytochemistry, 2013, vol. 95, pp. 408–420.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, T., Phenylpropanoid biosynthesis, Mol. Plant, 2010, vol. 3, pp. 2–20.

    Article  CAS  PubMed  Google Scholar 

  • Volynets, A.P., Fenol’nye soedineniya v zhiznedeyatel’nosti rastenii (Phenolic Compounds in Plant Life Activity), Minsk: Belaruskaya navuka, 2013.

    Google Scholar 

  • Vysochina, G.I., Evolution and phylogenetic relationships of genera in the family Polygonaceae (buckwheats) in connection with the biogenesis of phenolic compounds, Rastit. Mir Aziatskoi Rossii, 2008, no. 2, pp. 1–8.

    Google Scholar 

  • Winkel-Shirley, B., Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology, Plant Physiol., 2001, vol. 126, no. 2, pp. 485–493.

    CAS  PubMed  Google Scholar 

  • Yakimenko, A.F., Grechikha (Buckwheat), Moscow: Kolos, 1982.

    Google Scholar 

  • Zagoskina, N.V., Fernando, S.Ch., Fedoseeva, V.G., Azarenkova, N.D., and Zaprometov, M.N., On the ability of diploid and polyploid varieties of tea plants to produce phenolic compounds, S.-Kh. Biol., 1994, no. 1, pp. 117–119.

    Google Scholar 

  • Zagoskina, N.V., Olenichenko, N.A., Chzhou Yun’vei, and Zhivukhina, E.A., Formation of phenolic compounds in various cultivars of wheat (Triticum aestivum L.), Appl. Biochem. Microbiol., 2005, vol. 41, pp. 99–102.

    Article  CAS  Google Scholar 

  • Zaman, K., Phenolic compounds and phenylalanine ammonia lyase activity in two soybean (Glycine max L. cv. Mandarin) cell lines that differ in their ploidy levels, Acta Soc. Bot. Pol., 1988, vol. 57, pp. 177–183.

    Article  CAS  Google Scholar 

  • Zaprometov, M.N., Phenolic compounds and methods of their study, in Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Moscow: Nauka, 1971, pp. 185–197.

    Google Scholar 

  • Zaprometov, M.N., Fenol’nye soedineniya. Rasprostranenie, metabolizm i funktsii v rasteniyakh (Phenolic Compounds. Distribution, Metabolism, and Functions in Plants), Moscow: Nauka, 1993.

    Google Scholar 

  • Zaprometov, M.N. and Nikolaeva, T.N., Chloroplasts isolated from kidney bean leaves are capable of phenolic compound biosynthesis, Russ. J. Plant Physiol., 2003, vol. 50, pp. 623–626.

    Article  CAS  Google Scholar 

  • Zhurbitskii, Z.I. and Il’in, M.V., Teoriya i praktika vegetatsionnogo metoda (Theory and Practice of Vegetative Method), Moscow: Nauka, 1968.

    Google Scholar 

  • Zucker, M., Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue, Plant Physiol., 1965, vol. 40, pp. 779–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Zagoskina.

Additional information

Original Russian Text © N.V. Zagoskina, V.V. Kazantseva, A.N. Fesenko, A.V. Shirokova, 2018, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2018, No. 2, pp. 191–199.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagoskina, N.V., Kazantseva, V.V., Fesenko, A.N. et al. Accumulation of Phenolic Compounds at the Initial Steps of Ontogenesis of Fagopyrum esculentum Plants That Differ in Their Ploidy Levels. Biol Bull Russ Acad Sci 45, 171–178 (2018). https://doi.org/10.1134/S1062359018020140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359018020140

Navigation