Advertisement

Biology Bulletin

, Volume 45, Issue 1, pp 82–90 | Cite as

Effect of the Spatial Orientation of a Substrate on the Formation of Early Fouling Communities in the White Sea

  • V. V. Khalaman
  • N. S. Golubovskaya
  • A. Yu. Komendantov
  • S. S. Malavenda
  • T. A. Mikhaylova
Ecology

Abstract

The formation of early fouling communities developing under different spatial orientations of substrates and various lighting conditions was studied during a field experiment. The algal predominance on the sunlit upward-oriented sides and the animal predominance on the shaded downward-oriented sides are the consequence of two processes: (1) competitive displacement of animals from the sunlit sides by algae; (2) preferential colonization of the shaded downward-oriented sides of the substrates by animals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardizzone, G.D., Gravina, M.F., and Belluscio, A., Temporal development of epibenthic communities on artificial reefs in the central Mediterranean Sea, Bull. Mar. Sci., 1989, vol. 44, no. 2, pp. 592–608.Google Scholar
  2. Baynes, T.W., Factor structuring a subtidal encrusting community in the southern Gulf of California, Bull. Mar. Sci., 1999, vol. 64, pp. 419–450.Google Scholar
  3. Bell, J.J., The sponge community in a semi-submerged temperate sea cave: density, diversity and richness, Mar. Ecol., 2002, vol. 23, pp. 297–311.CrossRefGoogle Scholar
  4. Bingham, B.L. and Young, C.M., Influence of sponges on invertebrate recruitment: a field test of allelopathy, Mar. Biol. (Berlin), 1991, vol. 109, pp. 19–26.CrossRefGoogle Scholar
  5. Bram, J.B., Page, H.M., and Dugan, J.E., Spatial and temporal variability in early successional patterns of an invertebrate assemblage at an offshore oil platform, J. Exp. Mar. Biol. Ecol., 2005, vol. 317, pp. 223–237.CrossRefGoogle Scholar
  6. Chapman, M.G., Colonization of novel habitat: tests of generality of patterns in a diverse invertebrate assemblage, J. Exp. Mar. Biol. Ecol., 2007, vol. 348, pp. 97–110.CrossRefGoogle Scholar
  7. Clarke, K.R. and Gorley, R.N., Primer v6: User Manual/Tutorial, Plymouth: PRIMER-E Ltd., 2006.Google Scholar
  8. Connell, J.H. and Keough, M.J., Disturbance and patch dynamics of subtidal marine animals on hard substrata, in The Ecology of Natural Disturbance and Patch Dynamics, Pickett, S.T.A. and White, P.S., Eds., Orlando, Florida: Acad. Press, 1985, pp. 125–151.Google Scholar
  9. Darbyson, E.A., Hanson, J.M., Locke, A., and Willison, J.H.M., Settlement and potential for transport of clubbed tunicate (Styela clava) on boat hulls, Aquat. Invas., 2009, vol. 4, pp. 95–103.CrossRefGoogle Scholar
  10. Dobretsov, S.V. and Miron, G., Larval and post-larval vertical distribution of the mussel Mytilus edulis in the White Sea, Mar. Ecol. Progr. Ser., 2001, vol. 218, pp. 179–187.CrossRefGoogle Scholar
  11. Duggins, D.O., Eckman, J.E., and Sewell, A.T., Ecology of understory kelp environments. II. Effects of kelps on recruitment of benthic invertebrates, J. Exp. Mar. Biol. Ecol., 1990, vol. 143, pp. 27–45.CrossRefGoogle Scholar
  12. Durante, K.M., Larval behavior, settlement preference and induction of metamorphosis in the temperate solitary ascidian Molgula citrina Alder, Hancock, J. Exp. Mar. Biol. Ecol., 1991, vol. 145, pp. 175–187.CrossRefGoogle Scholar
  13. Glasby, T.M., Effect of shading on subtidal epibiotic assemblages, J. Exp. Mar. Biol. Ecol., 1999, vol. 234, pp. 275–290.CrossRefGoogle Scholar
  14. Glasby, T.M., Surface composition and orientation interact to affect subtidal epibiota, J. Exp. Mar. Biol. Ecol., 2000, vol. 248, pp. 177–190.CrossRefPubMedGoogle Scholar
  15. Glasby, T.M. and Connell, S.D., Orientation and position of substrata have large effects on epibiotic assemblages, Mar. Ecol.: Proc. Ser., 2001, vol. 214, pp. 127–135.CrossRefGoogle Scholar
  16. Hatcher, A.M., Epibenthic colonisation patterns on slabs of stabilised coal-waste in Pool Bay, UK, Hydrobiologia, 1998, vol. 367, pp. 153–162.CrossRefGoogle Scholar
  17. Hirata, T., Succession of sessile organisms on experimental plates immersed in Nabera Bay, Izu Peninsula, Japan. II. Succession of invertebrates, Mar. Ecol.: Proc. Ser., 1987, vol. 38, pp. 25–35.CrossRefGoogle Scholar
  18. Irving, A.D. and Connell, S.D., Sedimentation and light penetration interact to maintain heterogeneity of subtidal habitats: algal versus invertebrate dominated assemblages, Mar. Ecol.: Proc. Ser., 2002, vol. 245, pp. 83–91.CrossRefGoogle Scholar
  19. Khalaman, V.V., Fouling communities of mussel aquaculture installations in the White Sea, Russ. J. Mar. Biol., 2001a, vol. 2001, no. 27, pp. 4–227.Google Scholar
  20. Khalaman. V.V. Succession of fouling communities on an artificial substrate of a mussel culture in the White Sea, Russ. J. Mar. Biol., 2001b, vol. 2001, no. 27, pp. 6–345.Google Scholar
  21. Khalaman, V.V., Long-term changes in shallow-water fouling communities of the White Sea, Russ. J. Mar. Biol., 2005a, vol. 2005, no. 31, pp. 6–344.Google Scholar
  22. Khalaman, V.V., Testing the hypothesis of tolerance strategies in Hiatella arctica L. (Mollusca: Bivalvia), Helgoland Mar. Res., 2005b, vol. 59, pp. 187–195.CrossRefGoogle Scholar
  23. Khalaman, V.V., Komendantov, A.Yu., Malavenda, S.S., and Mikhaylova, T.A., Algae versus animals in early fouling communities of the White Sea, Mar. Ecol.: Proc. Ser., 2016, vol. 553, pp. 13–32.CrossRefGoogle Scholar
  24. McKinney, F.K. and McKinney, M.J., Contrasting marine larval settlement patterns imply habitat-seeking behaviours in a fouling and a cryptic species (phylum Bryozoa), J. Nat. Hist., 2002, vol. 36, pp. 487–500.CrossRefGoogle Scholar
  25. Miller, R.J. and Etter, R.J., Shading facilitates sessile invertebrate dominance in the rocky subtidal Gulf of Maine, Ecology, 2008, vol. 89, pp. 452–462.CrossRefPubMedGoogle Scholar
  26. Mook, D.H., Effects of disturbance and initial settlement on fouling community structure, Ecology, 1981, vol. 62, pp. 522–526.CrossRefGoogle Scholar
  27. Oshurkov, V.V., Dynamics and structure of some fouling and benthic communities of the White, in Ekologiya obrastaniya v Belom more (Ecology of Fouling in the White Sea), Leningrad: Izd. ZIN ANSSSR, 1985, pp. 44–59.Google Scholar
  28. Oshurkov, V.V., Suktsessii i dinamika epibentosnykh soobshchestv verkhnei sublitorali boreal’nykh vod (Successions and Dynamics of Epibenthic Communities of the Upper Subtidal Zone of Boreal Waters), Vladivostok: Dal’nauka, 2000.Google Scholar
  29. Oshurkov, V.V. and Oksov, I.V., The settling of fouling larvae in the Kandalaksha Bay of the White Sea, Biol. Morya, 1983, no. 4, pp. 25–32.Google Scholar
  30. Pacheco, A.S., Laudien, J., Thiel, M., Heilmayer, O., and Oliva, M., Hard-bottom succession of subtidal epibenthic communities colonizing hidden and exposed surfaces off northern Chile, Scientia Marina, 2010, vol. 74, pp. 147–154.CrossRefGoogle Scholar
  31. Pertsov, N.A., The study of fouling in the White Sea, Tr. BBS MGU, 1974, vol. 4, pp. 80–86.Google Scholar
  32. Preciado, I. and Maldonado, M., Reassessing the spatial relationship between sponges and macroalgae in sublittoral rocky bottoms: a descriptive approach, Helgoland Mar. Res., 2005, vol. 59, pp. 141–150.CrossRefGoogle Scholar
  33. Railkin, A.I., Besyadovskii, A.R., Primakov, I.M., and Koldunov, A.V., Vzaimodeistvie pribrezhnykh bentosnykh soobshchestv Belogo morya s pridonnym sloem (The Interaction of Coastal Benthic Communities of the White Sea with the Bottom Layer), St. Petersburg: Izd. SPbGU, 2012.Google Scholar
  34. Rius, M., Branch, G.M., Griffiths, Ch.L., and Turon, X., Larval settlement behaviour in six gregarious ascidians in relation to adult distribution, Mar. Ecol.: Proc. Ser., 2010, vol. 418, pp. 151–163.CrossRefGoogle Scholar
  35. Scheer, B.T., The development of marine fouling communities, Biol. Bull., 1945, vol. 89, pp. 103–122.CrossRefGoogle Scholar
  36. Seed, R., The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores. 1. Breeding and settlement, Oecologia, 1969, vol. 3, pp. 277–316.CrossRefPubMedGoogle Scholar
  37. Svane, I. and Young, C.M., The ecology and behaviour of ascidian larvae, Oceanogr. Mar. Biol.: Ann. Rev., 1989, vol. 27, pp. 45–90.Google Scholar
  38. Terlizzi, A., Conte, E., Zupo, V., and Mazzella, L., Biological succession on silicone fouling-release surfaces: longterm exposure tests in the Harbour of Ischia, Italy, Biofouling, 2000, vol. 15, pp. 327–342.CrossRefGoogle Scholar
  39. Thorson, G., Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates, Ophelia, 1964, vol. 1, pp. 167–208.CrossRefGoogle Scholar
  40. Todd, Ch.D. and Turner, S.J., Ecology of intertidal and sublittoral cryptic epifaunal assemblages. I. Experimental rationale and the analysis of larval settlement, J. Exp. Mar. Biol. Ecol., 1986, vol. 99, pp. 199–231.CrossRefGoogle Scholar
  41. Witman, J.D. and Sebens, K.P., Distribution and ecology of sponges at a subtidal rock ledge in the Central Gulf of Maine, in New Perspectives in Sponge Biology, Ruutzler, K., Ed., London: Smithsonian Inst. Press, 1990, pp. 391–396.Google Scholar
  42. Young, C.M. and Chia, F.S., Microhabitat-associated variability in survival and growth of subtidal solitary ascidians during their first 21 days after settlement, Mar. Biol. (Berlin), 1984, vol. 81, pp. 61–68.CrossRefGoogle Scholar
  43. Zevina, G.B., Fouling in the White Sea, Tr. Inst. Okeanol. Akad. Nauk SSSR, 1963, vol. 70, pp. 52–71.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Khalaman
    • 1
  • N. S. Golubovskaya
    • 2
  • A. Yu. Komendantov
    • 1
  • S. S. Malavenda
    • 2
  • T. A. Mikhaylova
    • 3
  1. 1.Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Murmansk State Technological UniversityMurmanskRussia
  3. 3.Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations