Biology Bulletin

, Volume 45, Issue 1, pp 31–34 | Cite as

Glyceryl Tricaprate in Thylakoids of Stevia rebaudiana and Its Physiological Role

  • N. I. Bondarev
  • D. V. Kurilov
  • T. A. Bondareva
  • A. M. Nosov
Plant Physiology


The short-day plant stevia (Stevia rebaudiana) was earlier reported to produce electron-dense thylakoids in the chloroplasts under long-day conditions. In the present work, such thylakoids were analyzed by transmission electron microscopy and gas chromatography–mass spectrometry. It was found that they contain glyceryl tricaprate, which belongs to triacylglycerols. A hypothesis is advanced that glyceryl tricaprate acts as a photoprotector for short-day plants against redundant solar radiation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Athenstaedt, K. and Daum, G., The life cycle of neutral lipids: synthesis, storage and degradation, Cell Mol. Life Sci., 2006, vol. 63, pp. 1355–1369.CrossRefPubMedGoogle Scholar
  2. Bafor, M., Jonsson, L., Stobart, A.K., and Stymne, S., Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata, Biochem. J., 1990, vol. 272, pp. 31–38.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Banaš, A., Dahlqvist, A., Ståhl, U., Lenman, M., and Stymne, S., The involvement of phospholipid: diacylglycerol acyltransferases in triacylglycerol production, Biochem. Soc. Trans., 2000, vol. 28, pp. 703–705.CrossRefPubMedGoogle Scholar
  4. Bondarev, N.I., Reshetnyak, O.V., and Nosov, A.M., Effect of photoperiod and irradiation intensity on the development of Stevia rebaudiana shoots in vitro and the synthesis of steviol glycosides in them, Izv. Timiryaz. S.-Kh. Akad., 2008, no. 4, pp. 102–107.Google Scholar
  5. Bondarev, N.I., Sukhanova, M.A., Semenova, G.A., Goryaeva, O.V., Andreeva, S.E., and Nosov, A.M., Morphology and ultrastructure of trichomes of intact and in vitro plants of Stevia rebaudiana Bertoni with reference to biosynthesis and accumulation of steviol glycosides, Moscow Univ. Biol. Sci. Bull., 2010, vol. 65, no. 1, pp. 12–16.CrossRefGoogle Scholar
  6. Bondarev, N.I., Reshetnyak, O.V., Bondareva, T.A., and Nosov, A.M., Distribution and dynamics of the content of diterpene glycosides in intact Stevia rebaudiana Bertoni plants, Biotekhnologiya, 2012, no. 5, pp. 50–54.Google Scholar
  7. Brandle, J.E., Starratt, A.N., and Gijzen, M., Stevia rebaudiana: its agricultural, biological and chemical properties, Can. J. Plant. Sci., 1998, vol. 78, pp. 527–536.CrossRefGoogle Scholar
  8. Chalapathi, M.K., Natural non-calorie sweetener stevia (Stevia rebaudiana Bertoni), Future Crop India. Crop Res., 1997, vol. 14, pp. 347–350.Google Scholar
  9. Chapman, K.D., Dyer, J.M., and Mullen, R.T., Biogenesis and functions of lipid droplets in plants, J. Lipid Res., 2012, vol. 53, pp. 215–226.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Danilova, M.F. and Kashina, T.K., Strukturnye osnovy aktinoritmicheskoi regulyatsii tsveteniya (Structural Basis of Actinorhythmic Flowering Regulation), St. Petersburg: Nauka, 1999.Google Scholar
  11. Durrett, T.P., Benning, C., and Ohlrogge, J., Plant triacylglycerols as feedstocks for the production of biofuels, Plant J., 2008, vol. 54, pp. 593–607.CrossRefPubMedGoogle Scholar
  12. Frentzen, M., Acyltransferases and triacylglycerols, in Lipid Metabolism in Plants, Moore, T.S., Jr., Ed., Boca Raton, FL: CRC Press, 1993, pp. 195–230.Google Scholar
  13. Goffman, F.D., Alonso, A.P., Schwender, J., Shachar-Hill, Y., and Ohlrogge, J.B., Light enables a very high efficiency of carbon storage in developing embryos of rapeseed, Plant Physiol., 2005, vol. 138, pp. 2269–2279.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J., 2008, vol. 54, pp. 621–639.CrossRefPubMedGoogle Scholar
  15. Kashina, T.K., Danilova, M.F., and Moshkov, B.S., Ultrastructure of chloroplasts in the leaves of Perilla ocymoides (Lamiaceae) and photoperiodic control of flowering, Bot. Zh., 1981, vol. 66, no. 12, pp. 1685–1694.Google Scholar
  16. Ladygin, V.G. and Shirshikova, G., Modern ideas about the functional role of carotenoids in eukaryotic chloroplasts, Zh. Obshch. Biol., 2006, vol. 67, pp. 163–190.PubMedGoogle Scholar
  17. Ladygin, V.G., Bondarev, N.I., Semenova, G.A., Smolov, A.A., Reshetnyak, O.V., and Nosov, A.M., Chloroplast ultrastructure, photosynthetic apparatus activities and production of steviol glycosides in Stevia rebaudiana in vivo and in vitro, Biol. Plant., 2008, vol. 52, no. 1, pp. 9–16.CrossRefGoogle Scholar
  18. Lemoine, Y. and Schoefs, B., Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress, Photosynth. Res., 2010, vol. 106, pp. 155–177.CrossRefPubMedGoogle Scholar
  19. Lung, S.C. and Weselake, R.J., Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis, Lipids, 2006, vol. 41, pp. 1073–1088.CrossRefPubMedGoogle Scholar
  20. Merzlyak, M., Chivkunova, O., Gorelova, O., Reshetnikova, I., Solovchenko, A., Khozin-Goldberg, I., and Cohen, Z., Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta), J. Phycol., 2007, vol. 43, pp. 833–843.CrossRefGoogle Scholar
  21. Ort, D., When there is too much light, Plant Physiol., 2001, vol. 125, pp. 29–32.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ruuska, S.A., Schwender, J., and Ohlrogge, J., The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes, Plant Physiol., 2004, vol. 136, pp. 2700–2709.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Semenova, G.A., Electron-dense material in the mesophyll cells of potato leaves, 1985, vol. 32, no. 3, pp. 461–464.Google Scholar
  24. Soejarto, D.D., Ethnobotany of Stevia and Stevia rebaudiana, in Stevia: The Genus Stevia, Kinghorn, A.D., Ed., London: Taylor Francis, 2002, pp. 40–67.Google Scholar
  25. Solovchenko, A.E., Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses, Russ. J. Plant Physiol., 2012, vol. 59, no. 2, pp. 167–176.CrossRefGoogle Scholar
  26. Solovchenko, A.E., Physiology and adaptive significance of secondary carotenogenesis in green microalgae, Russ. J. Plant Physiol., 2013, vol. 60, no. 1, pp. 1–13.CrossRefGoogle Scholar
  27. Stoyanova, S., Geuns, J., Hideg, E., and Ende, W., The food additives inulin and stevioside conteract oxidative stress, Int. J. Food Sci. Nutr., 2011, vol. 62, no. 3, pp. 207–214.CrossRefPubMedGoogle Scholar
  28. Sukhanova, M.A., Bondarev, N.I., Goryaeva, O.V., Andreeva, S.E., and Nosov, A.M., Ultrastructural characterization of plant cells and callus cultures of Stevia rebaudiana in relation to the synthesis of steviol glycosides, Biotekhnologiya, 2007, no. 5, pp. 51–59.Google Scholar
  29. Turnbull, A.P., Rafferty, J.B., Sedelnikova, S.E., Slabas, A.R., Schierer, T.P., Kroon, J.T., Simon, J.W., Fawcett, T., Nishida, I., Murata, N., and Rice, D.W., Analysis of the structure, substrate specificity, and mechanism of squash glycerol-3-phosphate (1)-acyltransferase, Structure, 2001, vol. 9, pp. 347–353.CrossRefPubMedGoogle Scholar
  30. Weselake, R.J., Taylor, D.C., Rahman, M.H., Shah, S., Laroche, A., McVetty, P., and Harwood, J., Increasing the flow of carbon into seed oil, Biotechnol. Adv., 2009, vol. 27, pp. 866–878.CrossRefPubMedGoogle Scholar
  31. Wiberg, E., Tillberg, E., and Stymne, S., Substrates of diacylglycerol acyltransferase in microsomes from developing oil seeds, Phytochemistry, 1994, vol. 36, pp. 573–577.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. I. Bondarev
    • 1
    • 2
  • D. V. Kurilov
    • 3
  • T. A. Bondareva
    • 2
  • A. M. Nosov
    • 1
    • 4
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Natural Sciences and BiotechnologyTurgenev State UniversityOrelRussia
  3. 3.Zelinskii Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Faculty of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations