Biology Bulletin

, Volume 45, Issue 1, pp 51–60 | Cite as

The Mechanoreceptor Organs of the Lamellirostral Birds (Anseriformes, Aves)

  • K. V. Avilova
  • A. G. Fedorenko
  • N. V. Lebedeva


Two types of surface tactile epidermal formations are identified in the bill tip organ of 11 species of lamellirostral birds. Their density arrangement and ratio in the mandible and maxilla are greater in dabbling ducks (filter-feeder species) than in herbivorous and in actively pursuing species. The length and proportions of the connective tissue tubules enclosing the encapsulated mechanoreceptors in filter-feeder species differ significantly from the others. The vibroreceptor endings are significantly more numerous in filter-feeder species and the touch endings in nonfiltering ones. The latter are smaller in the filter-feeder species. Within the walls of the connective tissue tubules, tactile epitheliocytes are registered for the first time. The structure of keratinocytes separating epidermal papillae of the bill tip organ apparently ensures their mobility. The bill tip organ is probably involved in the communication process of waterfowl.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avilova, K.V., The structure of the tactile bill-tip organ in three anseriform species, in Mater. Vsesoyuz. konf. po migratsiyam ptits (Proc. All-Union Conf. on Bird Migrations), Moscow: Izd. MGU, 1975, part II, pp. 157–159.Google Scholar
  2. Avilova, K.V., Ecological and morphological features of the bill-tip organ of four anseriform species, Vestn. Mosk. Univ., Ser. Biol., 1977, no. 3, pp. 44–49.Google Scholar
  3. Avilova, K.V., Mechanoreceptor structures of animals in the light of the signal biological field concept by N.P. Naumov, in Biologicheskoe signal’noe pole mlekopitayushchikh (The Biological Signal Field of Mammals), Nikol’skii, A.A. and Rozhnov, V.V., Eds., Moscow: KMK, 2013, pp. 216–223.Google Scholar
  4. Berkhoudt, H., The epidermal structure of the bill tip organ in ducks, Nether. J. Zool., 1976, vol. 26, pp. 561–566.CrossRefGoogle Scholar
  5. Berkhoudt, H., The morphology and distribution of cutaneous mechanoreceptors (Herbst and Grandry corpuscles) in bill and tongue of the mallard (Anas platyrhynchos L.), Nether. J. Zool., 1980, vol. 30, pp. 1–34.CrossRefGoogle Scholar
  6. Bianki, V.V., Dzerzhinskii, F.Ya., and Grintsevichene, T.I., Morphofunctional features of the mouth apparatus of the smew related to its trophic adaptations, Zool. Zh., 2013, vol. 92, no. 5, pp. 577–587.Google Scholar
  7. Flow Sensing in Air and Water: Behavioral, Neural and Engineering Principles of Operation, Bleckman, H., Mogdans, J., and Coombs, S.L., Eds., Berlin, Heidelberg: Springer Verlag, 2014.Google Scholar
  8. Catania, K.C., Epidermal sensory organs of moles, shrewmoles, and desmans: a study of the family Talpidae with comments on the function and evolution of Eimer’s organ, Brain Behav. Evol., 2000, vol. 56, pp. 146–174.CrossRefPubMedGoogle Scholar
  9. Fedorenko, A.G., Lebedeva, N.V., and Avilova, K.V., Ultrastructural study of the mechanoreceptor bill-tip organ of the mallard duck, in Mater. VI Mezhdunar. nauch.-prakt. konf. “Aktual’nye problemy biologii, nanotekhnologii i meditsiny”, Rostov-na-Donu, 1-3 oktyabrya 2015 g. (Proc. VI Int. Sci.-Practic., Conf. “Actual Problems of Biology, Nanotechnology, and Medicine,” Rostov-on-Don, October 1–3, 2015), Rostov-on-Don, 2015, pp. 284–286.Google Scholar
  10. Fernandez-Juricic, E., Sensory basis of vigilance behavior in birds: synthesis and future prospects, Behav. Proc., 2012, vol. 89, pp. 143–152.CrossRefGoogle Scholar
  11. Goodman, D.C. and Fisher, H., Functional Morphology of the Feeding Apparatus in Waterfowl, Aves: Anatidae, Carbondale: Southern Illinois Univ. Press, 1962.Google Scholar
  12. Gottschaldt, K.-M., Structure and function of avian somatosensory receptors, in Form and Function in Birds, King, A.S. and McLelland, J., Eds., London: Acad. Press, 1985, vol. 3, pp. 375–461.Google Scholar
  13. Gottschaldt, K.-M. and Lausmann, S., The peripheral morphological basis of tactile sensibility in the beak of geese, Cell. Tiss. Res., 1974, vol. 153, pp. 477–496.CrossRefGoogle Scholar
  14. Gottschaldt, K.-M., Andres, K.H., and von During, M., Fine structures and function of the bill tip organ in geese, Neurosci. Abstr., 1976, vol. 2, p. 1912.Google Scholar
  15. Goujon, E., Sur un appareil de corpuscles tactiles situe dans le bec des perroquets, J. Anat. Physiol., 1869, vol. 6, pp. 449–455.Google Scholar
  16. Grandry, M., Recherches sur les corpuscules de Pacini, J. Anat. Physiol., 1869, vol. 6, pp. 390–395.Google Scholar
  17. Grim, M. and Halata, Z., Developmental origin of avian Merkel cells, Anat. Embriol., 2000, vol. 202, pp. 401–410.CrossRefGoogle Scholar
  18. Halata, Z. and Grim, M., Sensory nerve endings in the beak skin of Japanese quail, Anat. Embriol., 1993, vol. 187, pp. 131–138.CrossRefGoogle Scholar
  19. Halata, Z., Grim, M., and Bauman, K., Friedrich Sigmund Merkel and his “Merkel cell,” morphology, development, and physiology: review and new results, Anatom. Rec. Pt A: Discover. Mol. Cell. Evol. Biol., 2003, vol. 271, pp. 225–239.CrossRefGoogle Scholar
  20. Herbst, G., Die Pacinichen Korper und ihre Bedeutung. Eine Beitrag zur Kenntnis der Nervenprimitivfasern, Göttingen: Vanden hoeck and Ruprecht, 1848.Google Scholar
  21. Ivanov, V.P., Fine structure of mechanoreceptors of insect hairs, in Mekhanizmy raboty retseptornykh elementov organov chuvstv (The Mechanisms of Functioning of Receptor Elements of Sense Organs), Leningrad: Nauka, 1973, pp. 140–146.Google Scholar
  22. Ivanov, V.P., Organy chuvstv nasekomykh i drugikh bespozvonochnykh (The Sense Organs of Insects and Other Invertebrates), Moscow: Nauka, 2000.Google Scholar
  23. Koblik, E.A. and Red’kin, Ya.A., The basic checklist of waterfowl (Anseriformes) of the world fauna, Kazarka, 2004, no. 10, pp. 15–46.Google Scholar
  24. Kondrat’ev, A.V., Foraging ecology of geese in the Arctic and on the way to it (review), Kazarka, 2002, no. 8, pp. 79–99.Google Scholar
  25. Kulikov, V.F. and Rutovskaya, M.V., Some features of the structure of the sensory organs and orientation of the Russian desman (Desmana moschata L., 1758), Sens. Sist., 2013, vol. 27, no. 3, pp. 238–245.Google Scholar
  26. Lange, B., Integument der Sauropsiden, in Handbuch der vergleichenden Anatomie der Wirbeltiere, Goppert, E., Kallius, E., Lubosch, W., and Bolk, L., Eds., Berlin: Urban Shwarzenberg, 1931, vol. 1, pp. 375–448.Google Scholar
  27. Lema, S.C. and Kelly, J.T., The production of communication signals at the air-water and water-substrate boundaries, J. Comp. Psychol., 2002, vol. 116, pp. 145–150.CrossRefPubMedGoogle Scholar
  28. Li, Z. and Clarke, J.A., The craniolingual morphology of waterfowl (Aves, Anseriformes) and its relationship with feeding mode revealed through contrast-enhanced X-ray computed tomography and 2D morphometrics, Evol. Biol., 2016, vol. 43, pp. 12–25.CrossRefGoogle Scholar
  29. Lisney, T.J., Stecyk, K., Kolominsky, J., Schmidt, B.K., Corfield, J.R., Iwaniuk, A.N., and Wylie, D.R., Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes, J. Comp. Physiol. A, 2013, vol. 199, pp. 385–402.CrossRefGoogle Scholar
  30. Lomadze, N.Kh., Lebedeva, N.V., Kolomeitsev, S.G., Govorunov, V.N., and Kulikov, V.V., Management of populations of game waterfowl species: a case study of the Veselovskii Reservoir, Vestn. Yuzhn. Nauch. Tsentra, 2009, vol. 5, no. 4, pp. 79–85.Google Scholar
  31. Ludicke, M., Aufbau and abnutzung der hornzahne und hornwulste der vogelshnabels, Z. Morphol. Okol. Tiere, 1940, vol. 37, pp. 155–201.CrossRefGoogle Scholar
  32. Merkel, F., Die tastzellen der ente, Arch. Mikr. Anat., 1878, vol. 15, pp. 415–427.CrossRefGoogle Scholar
  33. Naumov, N.P., Biological signal fields and their role in the life of mammals, in Uspekhi sovremennoi teriologii (Advances in Modern Theriology), Moscow: Nauka, 1977, pp. 93–110.Google Scholar
  34. Nikol’skii, A.A., The concept of the biological signal field as a branch of general ecology, in Biologicheskoe signal’noe pole mlekopitayushchikh (The Biological Signal Field of Mammals), Nikol’skii, A.A. and Rozhnov, V.V., Eds., Moscow: KMK, 2013, pp. 7–11.Google Scholar
  35. Roskin, G.I. and Levinson, L.B., Mikroskopicheskaya tekhnika (Microscopic Technique), Moscow: Kniga po trebovaniyu, 1951.Google Scholar
  36. Rozenfel’d, S.B., Pitanie kazarok i gusei v rossiiskoi Arktike (Foraging of Brants and Geese in the Russian Arctic), Moscow: KMK, 2009.Google Scholar
  37. Rukovodstvo po fiziologii organov chuvstv nasekomykh (Guidance on the Physiology of Sense Organs of Insects), Mazokhin-Porshnyakov, G.A., Ed., Moscow: Izd. MGU, 1977.Google Scholar
  38. Salomon, D., Carraux, P., Merot, Y., and Saurat, J.-H., Pathway of granule formation in Merkel cells: an ultrastructural study, J. Invest. Dermatol., 1987, vol. 89, pp. 362–365.CrossRefPubMedGoogle Scholar
  39. Saxod, R., Ultrastructure of Merkel corpuscles and so called “transitional” cells in the white leghorn chicken, Am. J. Anat., 1978, vol. 151, pp. 453–473.CrossRefPubMedGoogle Scholar
  40. Schildmacher, H., Untershung uber die Funktion der Herbstschen Korperchen, J. Ornithol., 1931, vol. 79, pp. 374–415.CrossRefGoogle Scholar
  41. Shilov, I.A., Ekologiya (Ecology), Moscow: Vyssh. shk., 1998.Google Scholar
  42. Shimohira-Yamasaki, M., Toda, S., Narisawa, Y., and Sugihara, H., Merkel cell-nerve cell interaction undergoes formation of a synapse-like structure in a primary culture, Cell. Struct. Funct., 2006, vol. 31, pp. 39–45.CrossRefPubMedGoogle Scholar
  43. Stresemann, E., Sauropsida: Aves, Kukenthal, W.G. and Krumbach, T., Eds., Handbuch der Zoologie, Bd 7/2, Berlin: Walter de Gruyter & Co, 1934.Google Scholar
  44. Tachibana, T., The Merkel cell: recent findings and unresolved problems, Arch. Histol. Cytol., 1995, vol. 58, pp. 379–396.CrossRefPubMedGoogle Scholar
  45. Tome, M.W. and Wrubleski, D.A., Underwater foraging behavior of canvasbacks, lesser scaups, and ruddy ducks, Condor, 1988, vol. 90, pp. 168–172.Google Scholar
  46. Truzzi, F., Marconi, A., and Pincelli, C., Neurotrophins in healthy and diseased skin, Dermato-Endocrinology, 2011, vol. 3, pp. 32–36.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhadan, P.M., Abdominal sensory organ in bivalves—a new model system for the study of mechanotransduction, Doctoral (Biol.) Dissertation, Vladivostok: Biol.-Pochv. Inst., DVO RAN, 2006.Google Scholar
  48. Zweers, G.A. and Berkhoudt, H., Recognition of food in pecking, probing and filter-feeding birds, in Acta XXCongr. Int. Ornithol. (1990), Wellington, New Zealand: Ornithological Congress Trust Board, 1991, pp. 897–901.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • K. V. Avilova
    • 1
  • A. G. Fedorenko
    • 2
  • N. V. Lebedeva
    • 2
    • 3
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Institute of Arid Zones, Southern Science CenterRussian Academy of SciencesRostov-on-DonRussia
  3. 3.Murmansk Marine Biological Institute, Kola Science CenterRussian Academy of SciencesMurmanskRussia

Personalised recommendations