Plant-Matrix Certified Reference Materials as a Tool for Ensuring the Uniformity of Chemical Measurements

Abstract

The role of plant-matrix certified reference materials as instruments ensuring the uniformity of measurements and the reliability of the results in performing ecological research and the production of foodstuffs and medicines is discussed. Specific features of the composition of plants as of test materials for chemical analysis and requirements to the methods of its determination are considered from the viewpoint of the provision of traditional agricultural tasks and geochemical, ecological, and medicobiological projects with certified reference materials. International and Russian regulatory documents on the preparation of certified reference materials taking into account the limited concentrations of toxic elements in plant materials are presented. Various content of classes of the existing plant-matrix certified, reference and for quality control materials of different producers are noted. The need in the expansion of the list of matrix certified reference materials for ensuring the reliability of analytical procedures in using methods of chemical analysis of plant materials and the consistency of their results is shown.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    Kabata-Pendias, A., Trace Elements in Soils and Plants, New York: Taylor and Francis, 2011, 4th ed.

    Google Scholar 

  2. 2

    Reimann, C., Koller, F., Frengstad, B., Kashulina, G., Niskavaara, H., and Englmaier, P., Sci. Total Environ., 2001, vol. 278, nos. 1–3, p. 87.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Buck, B.J., London, S.C., McLaurin, B.T., Metcalf, R., Mouri, H., Selinus, O., and Shelembe, R., Environ. Earth Sci., 2016, vol. 75, no. 6, 449.

    Article  Google Scholar 

  4. 4

    Markert, B., Water, Air, Soil Pollut., 1992, vol. 64, nos. 3–4, p. 533.

    CAS  Article  Google Scholar 

  5. 5

    Owen, J.D., Kirton, S.B., Evans, S.J., and Stair, J.L., J. Pharm. Biomed. Anal., 2016, vol. 125, no. 5, p. 15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Vasil’eva, I.E. and Shabanova, E.V., J. Anal. Chem., 2017, vol. 72, no. 2, p. 129.

    Article  CAS  Google Scholar 

  7. 7

    GOST (State Standard) 8.315-97: State System for Ensuring the Uniformity of Measurements. Certified Reference Materials of Composition and Properties of Substances and Materials. Basic Principles, Moscow: Standartinform, 2010.

  8. 8

    ISO/IEC Guide 99:2007: International Vocabulary of Metrology. Basic and General Concepts and Associated Terms (VIM), Geneva: ISO, 2007.

  9. 9

    GOST (State Standard) 32934-2014 (ISO Guide 30:1992): Reference Materials. Terms and Definitions Used in Connection with Reference Materials, Moscow: Standartinform, 2015.

  10. 10

    ISO Guide 30:2015: Reference Materials. Selected Terms and Definitions, Geneva: BSI, 2015.

  11. 11

    GOST (State Standard) 8.531-2002: State System for Ensuring the Uniformity of Measurements. Reference Materials of Composition of Solid and Disperse Materials. Ways of Homogeneity Assessment, Moscow: Izd. Standartov, 2003.

  12. 12

    GOST (State Standard) 8.532-2002: State System for Ensuring the Uniformity of Measurements. Certified Reference Materials of Composition of Substances and Materials. Interlaboratory Metrological Certification. Content and Order of Works, Moscow: Izd. Standartov, 2002.

  13. 13

    ISO Guide 31:2015: Reference Materials. Contents of Certificates, Labels and Accompanying Documentation, Geneva: BSI, 2015.

  14. 14

    ISO Guide 33:2015: Reference Materials. Good Practice in Using Reference Materials, Geneva: BSI, 2015.

  15. 15

    ISO/IEC Guide 98-3:2008: Uncertainty of Measurement. Guide to the Expression of Uncertainty in Measurement, Geneva: ISO, 2008.

  16. 16

    GOST (State Standard) ISO Guide 35-2015: Reference Materials. General and Statistical Principles for Certification, Moscow: Standartinform, 2017.

  17. 17

    Linsinger, T.P.J. and Emons, H., Chimia, 2009, vol. 63, no. 10, p. 629.

    CAS  Article  Google Scholar 

  18. 18

    Olivares, I.R.B., Souza, G.B., Nogueira, A.R.A., Toledo, G.T.K., and Marcki, D.C., TrAC, Trends Anal Chem., 2018, vol. 100, p. 53.

    CAS  Article  Google Scholar 

  19. 19

    Hulme, N. and Hammond, J., Spectrosc. Eur., 2020, vol. 32, no. 1, p. 14.

    CAS  Google Scholar 

  20. 20

    Federal Law of the Russian Federation of January 10, 2002, no. 7-FZ “On Environmental Protection,” Moscow, 2001.

  21. 21

    Decree of the President of the Russian Federation of January 21, 2020, no. 20 “On Approval of the Doctrine of Food Security of the Russian Federation.”

  22. 22

    Federal Law of the Russian Federation of June 26, 2008, no. 102-FZ “On Ensuring the Uniformity of Measurements,” Moscow, 2008.

  23. 23

    GOST (State Standard) ISO/IEC 17025-2019: General Requirements for the Competence of Testing and Calibration Laboratories, Moscow: Standartinform, 2019.

  24. 24

    May, W., Parris, R.II., Beck, C., Fassett, J., Greenberg, R., Guinther, F., Kramer, G., Wise, S., Gills, T., Colbert, J., Gettings, R., and MacDonald, B., Definition of terms and models used at NIST for value-assignment of reference materials for chemical measurements, NIST Spec. Publ. 260-136, Gaithersburg: Natl. Inst. Standards Technol., 2000.

    Google Scholar 

  25. 25

    Mengel, K., Kirkby, E.A., Kosegarten, H., and Appel, T., Principles of Plant Nutrition, Dordrecht: Springer, 2001.

    Google Scholar 

  26. 26

    ITRC: Phytotechnology Technical and Regulatory Guidance Document, ITRC, 2001.

    Google Scholar 

  27. 27

    Maurice, P.A., Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale, New York: Wiley, 2009.

    Google Scholar 

  28. 28

    Epstein, E., Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, no. 1, p. 11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Hodson, M.J., White, P.J., Mead, A., and Broadley, M.R., Ann. Bot., 2005, vol. 96, no. 6, p. 1027.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Kashin, V.K., Chem. Sustainable Dev., 2011, vol. 19, no. 3, p. 237.

    Google Scholar 

  31. 31

    Reshetov, Ya.E., Belousov, M.V., Avdeeva, E.Yu., and Shurupova, M.N., Khim. Rastit. Syr’ya, 2018, no. 4, p. 205.

  32. 32

    Vasil’eva, I.E. and Shabanova, E.V., Analitika Kontrol’, 2019. T. 23, no. 3, p. 298.

  33. 33

    Khramova, E.P., Boyarskikh, I.G., Chankina, O.V., and Kutsenogii, K.P., Rastit. Mir Aziat. Ross., 2011, vol. 8, no. 2, p. 104.

    Google Scholar 

  34. 34

    Zubkov, N.V. and Zubkova, V.M., Vestn. Mosk. Gor. Ped. Univ., Ser.: Estestv. Nauki, 2010, no. 2, p. 43.

  35. 35

    Wiggenhauser, M., Bigalke, M., Imseng, M., Keller, A., Archer, C., Wilcke, W., and Frossard, E., New Phytol., 2018, vol. 219, no. 1, p. 195.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Shilova, I.V., Baranovskaya, N.V., Mustafin, R.N., and Suslov, N.I., Khim. Rastit. Syr’ya, 2019, no. 4, p. 191.

  37. 37

    Eisenhardt de Mello, J., la Rosa Novo, D., Silva Coelho, G., Jr., Tessmer Scaglioni, P., and Foster Mesko, M., Food Anal. Methods, 2020, vol. 13, no. 1, p. 131.

    Article  Google Scholar 

  38. 38

    Bowen, H.J.M., Analyst, 1967, vol. 92, no. 1091, p. 124.

    CAS  Article  Google Scholar 

  39. 39

    Selina, M., Drolc, A., Selina, L., and Levei, E., J. Anal. Sci. Technol., 2014, vol. 5.

  40. 40

    Walton, J.R., in Encyclopedia of Environmental Health, Nriagu, J.O., Ed., New York: Elsevier, 2019 2nd ed., p. 328.

    Google Scholar 

  41. 41

    Chang, H.F., Wang, S.L., Lee, D.C., Hsiao, S.S.Y., Hashimoto, Y., and Yeh, K.C., J. Hazard Mater., 2020, vol. 387, 121983.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Cassidy, N.G., Plant Soil, 1966, vol. 25, no. 3, p. 372.

    CAS  Article  Google Scholar 

  43. 43

    Jeyakumar, P. and Balamohan, T.N., Diagnosis of nutritional disorders. http://www.agritech.tnau.ac.in/agriculture/PDF/Diagnosis%20of%20nutritional%20disorders.pdf. Accessed April 1, 2020.

  44. 44

    Yagodin, B.A., Zhukov, Yu.P., and Kobzarenko, V.I., Agrokhimiya (Agrochemistry), Yagodin, B.A., Ed., Moscow: Kolos, 2002.

    Google Scholar 

  45. 45

    Kovalevskii, A.L., Geochem.: Explor., Environ., Anal., 2001, vol. 1, no. 2, p. 143.

    CAS  Google Scholar 

  46. 46

    Zimmermann, S., Messerschmidt, J., Von Bohlen, A., and Sures, B., Anal. Chim. Acta, 2003, vol. 498, nos. 1–2, p. 93.

    CAS  Article  Google Scholar 

  47. 47

    Dongarrá, G., Varrica, D., and Sabatino, G., Appl. Geochem., 2003, vol. 18, no. 1, p. 109.

    Article  Google Scholar 

  48. 48

    Ravindra, K., Bencs, L., and Van Grieken, R., Sci. Total Environ., 2004, vol. 318, nos. 1–3, p. 1.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Reimann, C. and Niskavaara, H., in Palladium Emissions in the Environment, Zereini, F. and Alt, F., Eds., Berlin: Springer, 2006, p. 53.

    Google Scholar 

  50. 50

    Pshenichkina, Y.A. and Pshenichkin, A.Y., Contemp. Probl. Ecol., 2018, vol. 11, no. 2, p. 221.

    Article  Google Scholar 

  51. 51

    Jurkin, D., Zgorelec, Z., and Rinkovec, J., J. Cent. Eur. Agric., 2019, vol. 20, no. 2, p. 686.

    Article  Google Scholar 

  52. 52

    Kramer, K.J.M., De Haan, E.P.M., Groenewoud, H.V.H., Dorten, W., Kramer, G.N., Muntau, H., and Quevauviller, P., TrAC, Trends Anal. Chem., 2002, vol. 21, no. 11, p. 762.

    CAS  Article  Google Scholar 

  53. 53

    Tyler, G., Plant Soil, 2004, vol. 267, nos. 1–2, p. 191.

    CAS  Article  Google Scholar 

  54. 54

    Kovalsky, VV., Philos. Trans. R. Soc., B, 1979, vol. 288, no. 1026, p. 185.

  55. 55

    Kovalevskii, A.L., Biogeokhimiya rastenii (Plant Biogeochemistry), Novosibirsk: Nauka, 1991.

  56. 56

    Nagajyoti, P.C., Lee, K.D., and Sreekanth, T.V.M., Environ. Chem. Lett., 2010, no. 8, p. 199.

  57. 57

    Shafigullin, D.R., Teor. Prikl. Probl. Agroprom. Kompleksa., 2019, vol. 41, no. 3, p. 30.

    Google Scholar 

  58. 58

    García-Delgado, C., Cala, V., and Eymar, E., Talanta, 2012, vol. 88, p. 375.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  59. 59

    Khan, A., Khan, S., Khan, M.A., Qamar, Z., and Waqas, M., Environ. Sci. Pollut. Res., 2015, vol. 22, no. 18, p. 13772.

    CAS  Article  Google Scholar 

  60. 60

    Cloquet, C., Carignan, J., Lehmann, M.F., and Vanhaecke, F., Anal. Bioanal. Chem., 2008, vol. 390, no. 2, p. 451.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Bolou-Bi, E.B., Vigier, N., Brenot, A., and Poszwa, A., Geostand. Geoanal. Res., 2009, vol. 33, no. 1, p. 95.

    CAS  Article  Google Scholar 

  62. 62

    Xiao, J., Vogl, J., Rosner, M., Deng, L., and Jin, Z., Talanta, 2019, vol. 196, p. 389.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63

    Wolf, W.R. and Andrews, K.W., Fresenius’ J. Anal. Chem., 1995, vol. 352, no. 1, p. 73.

    CAS  Article  Google Scholar 

  64. 64

    Wise, S.A. and Phillips, M.M., Anal. Bioanal. Chem., 2019, vol. 411, no. 1, p. 97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Li, Y., Wang, Y., Gou, X., Su, Y., and Wang, G., J. Environ. Sci., 2006, vol. 18, no. 6, p. 1124.

    CAS  Article  Google Scholar 

  66. 66

    Anunciação, D.S., Leao, D.J., de Jesus, R.M., and Ferreira, S.L.C., Food Anal. Methods, 2011, vol. 4, p. 286.

    Article  Google Scholar 

  67. 67

    do Carmo Federici Padilha, C., de Martin Moraes, P., de Arruda Garcia, L., Costa Pozzi, M.C., Pace Pereira Lima, G., Serra Valente, J.P., Alves Jorge, S.M., and de Magalhaes Padilha, P., Food Anal. Methods, 2011, vol. 4, no. 3, p. 319.

    Article  Google Scholar 

  68. 68

    Zivkovic, S., Savovic, J., Kuzmanovic, M., Petrovic, J., and Momcilovic, M., Microchem. J., 2018, vol. 137, p. 410.

    CAS  Article  Google Scholar 

  69. 69

    Pardinho, R.B., Dalla VecchiaP., Mendes, A.L.G., Bizzi, C.A., Mello, P.A., Duarte, F.A., and Flores, E.M.M., Food Chem., 2018, vol. 263, p. 37.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70

    Gamela, R.R., Costa, V.C., and Pereira-Filho, E.R., Food Anal. Methods, 2020, vol. 13, no. 1, p. 69.

    Article  Google Scholar 

  71. 71

    Titarenko, V.O., Kaunova, A.A., Temerdashev, Z.A., and Popandopulo, V.G., Analitika Kontrol’, 2016, vol. 20, no. 2, p. 138.

    Google Scholar 

  72. 72

    Milićević, T., Relić, D., Urošević, M.A., Vuković, G., Škrivanj, S., Samson, R., and Popović, A., Ecotoxicol. Environ. Saf., 2018, vol. 163, no. 15, p. 245.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  73. 73

    Rai, P.K., Lee, S.S., Zhang, M., Tsang, Y.F., and Kim, K.H., Environ. Int., 2019, vol. 125, p. 365.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Barbosa, R.M., Batista, B.L., Varrique, R.M., Coelho, V.A., Campiglia, A.D., and Barbosa, F., Jr., Food Res. Int., 2014, vol. 61, no. 7, p. 246.

    CAS  Article  Google Scholar 

  75. 75

    Syso, A.I., Syromlya, T.I., Myadelets, M.A., and Cherevko, A.S., Contemp. Probl. Ecol., 2016, vol. 9, no. 5, p. 643.

    Article  Google Scholar 

  76. 76

    Habte, G., Hwang, I.M., Kim, J.S., Hong, J.H., Hong, Y.S., Choi, J.Y., Nho, E.Y., Jamila, N., Khan, N., and Kim, K.S., Food Chem., 2016, vol. 212, p. 512.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Allan, M., Le Roux, G., De Vleeschouwer, F., Bindler, R., Blaauw, M., Piotrowska, N., Sikorski, J., and Fagel, N., Environ. Pollut., 2013, vol. 178, p. 381.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Malea, P. and Kevrekidis, T., Sci. Total Environ., 2013, vols. 463–464, p. 611.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  79. 79

    Wu, Q., Wang, S., Wang, L., Liu, F., Lin, C.J., Zhang, L., and Wang, F., Sci. Total Environ., 2014, vol. 496, p. 668.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80

    Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., and Niazi, N.K., J. Hazard. Mater., 2017, vol. 325, p. 36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81

    Brooks, R.R., Biological Methods of Prospecting for Minerals, New York: Wiley, 1983.

    Google Scholar 

  82. 82

    Krämer, U., Annu. Rev. Plant Biol., 2010, vol. 61, no. 1, p. 517.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  83. 83

    Reeves, R.D. and Baker, A.J.M., in Phytoremediation of Toxic Metals; Using Plants to Clean up the Environment, Raskin, I. and Ensley, B.D., Eds., New York: Wiley, 2000, p. 193.

    Google Scholar 

  84. 84

    Álvarez, E., Fernández, M.L., Vaamonde, C., and Fernández, M.J., Sci. Total Environ., 2003, vol. 313, nos. 1–3, p. 185.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  85. 85

    Bettinelli, M., Perotti, M., Spezia, S., Baffi, C., Maria Beone G., Alberici, F., Bergonzi, S., Bettinelli, C., Cantarini, P., and Mascetti, L., Microchem. J., 2002, vol. 73, nos. 1–2, p. 131.

    CAS  Article  Google Scholar 

  86. 86

    Nečemer, M., Kump, P., Ščančar, J., Jaćimović, R., Simčič, J., Pelicon, P., Budnar, M., Jeran, Z., Pongrac, P., Regvar, M., and Vogel-Mikuš, K., Spectrochim. Acta, Part B, 2008, vol. 63, no. 11, p. 1240.

    Article  CAS  Google Scholar 

  87. 87

    Kroukamp, E.M., Wondimu, T., and Forbes, P.B.C., TrAC, Trends Anal. Chem., 2016, vol. 77, p. 87.

    CAS  Article  Google Scholar 

  88. 88

    Elshamy, M.M., Heikal, Y.M., and Bonanomi, G., Chemosphere, 2019, vol. 225, p. 678.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Thompson, M., J. Geochem. Explor., 1992, vol. 44, nos. 1–3, p. 3.

    CAS  Article  Google Scholar 

  90. 90

    Koval, P.V., Burenkov, E.K., and Golovin, A.A., J. Geochem. Explor., 1995, vol. 55, nos. 1–3, p. 115.

    CAS  Article  Google Scholar 

  91. 91

    Xie, X., Analyst, 1995, vol. 120, no. 5, p. 1497.

    Article  Google Scholar 

  92. 92

    Blaser, P., Zimmermann, S., Luster, J., and Shotyk, W., Sci. Total Environ., 2000, vol. 249, nos. 1–3, p. 257.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Wang, X., Zhang, Q., and Zhou, G., Geostand. Geoanal. Res., 2007, vol. 31, no. 4, p. 311.

    Article  Google Scholar 

  94. 94

    Inácio, M., Pereira, V., and Pinto, M., J. Geochem. Explor., 2008, vol. 98, no. 1, p. 22.

    Article  CAS  Google Scholar 

  95. 95

    Korobova, E., Romanov, S., and Silenok, A., Environ. Geochem. Health, 2019, vol. 42, p. 2595.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  96. 96

    Szczepaniak, K. and Biziuk, M., Environ. Res., 2003, vol. 93, no. 3, p. 221.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Aubert, D., Le Roux, G., Krachler, M., Cheburkin, A., Kober, B., Shotyk, W., Stille, P., Geochim. Cosmochim. Acta, 2006, vol. 70, no. 11, p. 2815.

    CAS  Article  Google Scholar 

  98. 98

    Lubbe, A. and Verpoorte, R., Ind. Crops Prod., 2011, vol. 34, no. 1, p. 785.

    CAS  Article  Google Scholar 

  99. 99

    Bayandina, I.I. and Zagurskaya, Yu.V., Sib. Med. Zh. (Irkutsk), 2014, no. 8, p. 107.

  100. 100

    Gusev, N.F., Petrova, G.V., Filippova, A.A., and Nemereshina, O.N., Izv. Orenb. Gos. Agrar. Univ., 2014, no. 2(46), p. 167.

  101. 101

    Tinkov, A.A., Ajsuvakova, O.P., Skalnaya, M.G., Popova, E.V., Sinitskii, A.I., Nemereshina, O.N., and Skalny, A.V., BioMetals, 2015, vol. 28, no. 2, p. 231.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102

    Rodushkin, I., Ödman, F., and Holmström, H., Sci. Total Environ., 1999, vol. 231, no. 1, p. 53.

    CAS  Article  Google Scholar 

  103. 103

    Rodushkin, I., Engström, E., Sörlin, D., and Baxter, D., Sci. Total Environ., 2008, vol. 392, nos. 2−3, p. 290.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104

    Ramazanov, A.Sh., Balaeva, Sh.A., and Shakhbanov, K.Sh., Khim. Rastit. Syr’ya, 2019, no. 2, p. 113.

  105. 105

    Siromlya, T.I. and Zagurskaya, Yu.V., Khim. Rastit. Syr’ya, 2019, no. 2, p. 179.

  106. 106

    Bakova, E.Yu., Plugatar’, Yu.V., Bakova, N.N., and Konovalov, D.A., Khim. Rastit. Syr’ya, 2019, no. 3, p. 217.

  107. 107

    Dylenova, E.P., Zhigzhitzhapova, S.V., Randalova, T.E., Radnaeva, L.D., Shiretorova, V.G., and Pavlov, I.A., Khim. Rastit. Syr’ya, 2019, no. 4, p. 199.

  108. 108

    World Health Organization Drug Information. Herbal Medicines, Geneva, 2002, vol. 16, no. 2, p. 115.

    Google Scholar 

  109. 109

    Antipova, E.A. and Leites, E.A., Khim. Rastit. Syr’ya, 2019, no. 2, p. 189.

  110. 110

    Jorhem, L., Fresenius’ J. Anal. Chem., 1998, vol. 360, nos. 3–4, p. 370.

    CAS  Article  Google Scholar 

  111. 111

    World Health Organization. National Policy on Traditional Medicine and Regulation of Herbal Medicines: Report of a WHO Global Survey, Geneva, 2007.

  112. 112

    Gosudarstvennaya farmakopeya Rossiiskoi Federatsii (State Pharmacopoeia of the Russian Federation), Moscow, 2016, 13th ed. www.rosminzdrav.ru/poleznye-resursy/gosudarstvennaya-farmakopeya-rossiyskoy-federatsii-xiii-izdaniya. Accessed November 18, 2018.

  113. 113

    Gosudarstvennaya farmakopeya Rossiiskoi Federatsii (State Pharmacopoeia of the Russian Federation), Moscow, 2018, 14th ed. http://www.femb.ru/femb/pharmacopea.php. Accessed July 2, 2020.

  114. 114

    SanPin (Sanitary Regulation) 2.3.2.1078-01: Hygienic Requirements for the Quality and Safety of Food Stock and Food Products, chapters “General Provisions,” “1.10. Dietary Food Supplements,” and “1.10.7. Plant-Based Dietary Supplements, Including Pollen,” Moscow, 2001, 2009.

  115. 115

    Ernst, E. and Thompson Coon, J., Clin. Pharmacol. Ther., 2001, vol. 70, no. 6, p. 497.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116

    Ernst, E., Eur. J. Clin. Pharmacol., 2002, vol. 57, no. 12, p. 891.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117

    United States Pharmacopeia, General Chapter no. 232: Elemental Impurities—Limits, USP 40-NF35, 1st suppl., December 1, 2017. www.usp.org/sites/default/files/usp/document/our-work/chemical-medicines/key-issues/232-40-35-1s.pdf. Accessed July 2, 2020.

  118. 118

    United States Pharmacopeia. General Chapter no. 233: Elemental Impurities—Procedures, USP 38–NF 33, 2nd suppl. www.usp.org/sites/default/files/usp/document/our-work/chemical-medicines/key-issues/c233.pdf. Accessed July 2, 2020.

  119. 119

    International Union for Conservation of Nature and Natural Resources, 2010.1. IUCN Red List of Threatened Species: Summary Statistics. www.iucnredlist.org. Accessed July 2, 2020.

  120. 120

    International Union for Conservation of Nature and Natural Resources, 2020. The IUCN Red List of Threatened Species, ver. 2020-1. www.iucnredlist.org. Accessed July 2, 2020.

  121. 121

    Plant Analysis Procedures, Temminghoff, E.E.J.M. and Houba, V.J.G., Eds., Dordrecht: Kluwer, 2004, 2nd ed.

    Google Scholar 

  122. 122

    Karyakin, A.V. and Gribovskaya, I.F., Emissionnyi spektral’nyi analiz ob’’ektov biosfery (Emission Spectral Analysis of Biosphere Objects), Moscow: Khimiya, 1979.

  123. 123

    Korhammer, S., Herzig, R., Schramel, P., Kumpulainen, J., Markert, B., Muntau, H., and Quevauviller, P., Accredit. Qual. Assur., 2000, vol. 5, no. 6, p. 238.

    CAS  Article  Google Scholar 

  124. 124

    Hussain, J., Bahader, A., Ullah, F., Rehman, N.U., Khan, A.L., Ullah, W., and Shinwari, Z.K., J. Am. Sci., 2009, vol. 6, no. 5, p. 91.

    Google Scholar 

  125. 125

    Medvedevskikh, M.Yu., Sergeeva, A.S., Krashenini-na, M.P., and Shokhina, O.S., Zavod. Lab., Diagn. Mater., 2019, vol. 85, no. 6, p. 70.

    CAS  Google Scholar 

  126. 126

    Hoenig, M., Talanta, 2001, vol. 54, p. 1021.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127

    Momen, A.A., Zachariadis, G.A., Anthemidis, A.N., and Stratis, J.A., Microchim. Acta, 2008, vol. 160, no. 4, p. 397.

    CAS  Article  Google Scholar 

  128. 128

    Maichin, B., Zischka, M., and Knapp, G., Anal. Bioanal. Chem., 2003, vol. 376, no. 5, p. 715.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129

    Nascentes, C.C., Korn, M., and Arruda, M.A., Microchem. J., 2001, vol. 69, no. 1, p. 37.

    CAS  Article  Google Scholar 

  130. 130

    Domínguez-González, R., Moreda-Piñeiro, A., Bermejo-Barrera, A., and Bermejo-Barrera, P., Talanta, 2005, vol. 66, no. 4, p. 937.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  131. 131

    Carvalho Santos, W.P., Teixeira Castro, J., Almeida Bezerra, M., Pires Fernandes, A., Costa Ferreira, S.L., and Graças Andrade Korn, M., Microchem. J., 2009, vol. 91, no. 2, p. 153.

    Article  CAS  Google Scholar 

  132. 132

    De La Calle, I., Costas, M., Cabaleiro, N., Lavilla, I., and Bendicho, C., Food Chem., 2013, vol. 138, no. 1, p. 234.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133

    Orlov, S.V., Orlova, V.A., and Sychev, V.G., Plodorodie, 2002, no. 5(8), p. 25.

  134. 134

    Borkowska-Burnecka, J., Fresenius’ J. Anal. Chem., 2000, vol. 368, no. 6, p. 633.

    CAS  Article  Google Scholar 

  135. 135

    Baffi, C., Bettinelli, M., Beone, G.M., and Spezia, S., Chemosphere, 2002, vol. 48, no. 3, p. 299.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136

    Krachler, M., Mohl, C., Emons, H., and Shotyk, W., Spectrochim. Acta, Part B, 2002, vol. 57, no. 8, p. 1277.

    Article  Google Scholar 

  137. 137

    Silva, M.M., Vale, M.G.R., Fereira Damin, I.C., Welz, B., Mandaji, M., and Fett, J.P., Anal. Bioanal. Chem., 2003, vol. 377, no. 1, p. 165.

    CAS  PubMed  Article  Google Scholar 

  138. 138

    Sucharova, J. and Suchara, I., Anal. Chim. Acta, 2006, vol. 576, no. 2, p. 163.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139

    Konieczynski, P. and Wesolowski, M., Food Chem., 2007, vol. 103, no. 1, p. 210.

    CAS  Article  Google Scholar 

  140. 140

    Chen, L., Song, D., Tian, Y., Ding, L., Yu, A., and Zhang, H., TrAC, Trends Anal. Chem., 2008, vol. 27, no. 2, p. 151.

    CAS  Article  Google Scholar 

  141. 141

    Mesko, M.F., Picoloto, R.S., Ferreira, L.R., Costa, V.C., Pereira, C.M.P.P., Colepicolo, P., Muller, E.I., and Flores, E.M.M., J. Anal. At. Spectrom., 2015, vol. 30, no. 1, p. 260.

    CAS  Article  Google Scholar 

  142. 142

    Engelsen, C. and Wibetoe, G., Fresenius’ J. Anal. Chem., 2000, vol. 366, no. 5, p. 494.

    CAS  Article  Google Scholar 

  143. 143

    Sánchez-Moreno, R.A., Gismera, M.J., Sevilla, M.T., and Procopio, J.R., Phytochem. Anal., 2010, vol. 21, no. 4, p. 340.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  144. 144

    De Gregori, I., Pinochet, H., Fuentes, E., and Potin-Gautier, M., J. Anal. At. Spectrom., 2001, vol. 16, no. 2, p. 172.

    CAS  Article  Google Scholar 

  145. 145

    Wang, J. and Hansen, E.H., J. Anal. At. Spectrom., 2002, vol. 17, no. 10, p. 1278.

    CAS  Article  Google Scholar 

  146. 146

    Wang, J. and Hansen, E.H., J. Anal. At. Spectrom., 2002, vol. 17, no. 10, p. 1284.

    CAS  Article  Google Scholar 

  147. 147

    Semenova, N.V., Leal, L.O., Forteza, R., and Cerda, V., Anal. Chim. Acta, 2002, vol. 486, p. 217.

    Article  CAS  Google Scholar 

  148. 148

    Matusiewicz, H. and Kopras, M., J. Anal. At. Spectrom., 2003, vol. 18, no. 12, p. 1415.

    CAS  Article  Google Scholar 

  149. 149

    Long, X., Chomchoei, R., Gala, P., and Hansen, E.H., Anal. Chim. Acta, 2004, vol. 523, no. 2, p. 279.

    CAS  Google Scholar 

  150. 150

    Jaćimović, R. and Horvat, M., J. Radioanal. Nucl. Chem., 2004, vol. 259, no. 3, p. 385.

    Article  Google Scholar 

  151. 151

    Sun, H.-W. and Suo, R., Anal. Chim. Acta, 2004, vol. 509, no. 1, p. 71.

    CAS  Article  Google Scholar 

  152. 152

    Chen, B., Krachler, M., Gonzalez, Z.I., and Shotyk, W., J. Anal. At. Spectrom., 2005, vol. 20, no. 2, p. 95.

    Article  CAS  Google Scholar 

  153. 153

    Long, X., Hansen, E.H., and Miro, M., Talanta, 2005, vol. 66, no. 5, p. 1326.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154

    Yin, J., Jiang, Z., Chang, G., and Hu, B., Anal. Chim. Acta, 2005, vol. 540, no. 2, p. 333.

    CAS  Article  Google Scholar 

  155. 155

    Chojnacka, K., Talanta, 2006, vol. 70, no. 5, p. 966.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156

    Grobecker, K.H. and Detcheva, A., Talanta, 2006, vol. 70, no. 5, p. 962.

    CAS  PubMed  Article  Google Scholar 

  157. 157

    Leal, L.O., Forteza, R., and Cerdà, V., Talanta, 2006, vol. 69, no. 2.

  158. 158

    Wang, Y., Chen, M.-L., and Wang, J.-H., J. Anal. At. Spectrom., 2006, vol. 21, no. 5, p. 535.

    CAS  Article  Google Scholar 

  159. 159

    Frentiu, T., Ponta, M., Senila, M., Mihaltan, A.I., Darvasi, E., Frentiu, M., and Cordos, E., J. Anal. At. Spectrom., 2010, vol. 25, no. 5, p. 739.

    CAS  Article  Google Scholar 

  160. 160

    Guo, W., Hu, S., Wang, Y., Zhang, L., Hu, Z., and Zhang, J., Microchem. J., 2013, vol. 108, p. 106.

    CAS  Article  Google Scholar 

  161. 161

    Tsizin, G.I., Statkus, M.A., and Zolotov, Yu.A., J. Anal. Chem., 2015, vol. 70, no. 11, p. 1289.

    CAS  Article  Google Scholar 

  162. 162

    Zhang, J., Li, T., Yang, Y.L., Liu, H.G., and Wang, Y.Z., Biol. Trace Elem. Res., 2015, vol. 164, no. 2, p. 261.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163

    Lu, X.P., Yang, X.A., Liu, L., Hu, H.H., and Zhang, W.B., Talanta, 2017, vol. 165, p. 258.

    CAS  PubMed  Article  Google Scholar 

  164. 164

    Liu, X., Zhu, Z., Bao, Z., Zheng, H., and Hu, S., Spectrochim. Acta, Part B, 2018, vol. 141, p. 15.

    CAS  Article  Google Scholar 

  165. 165

    Smichowski, P. and Londonio, A., Microchem. J., 2018, vol. 136, p. 113.

    CAS  Article  Google Scholar 

  166. 166

    Baranovskaya, N.V. and Chernen’kaya, E.V., Fundam. Issled.: Khim. Nauki, 2015, no. 2-2, p. 299.

  167. 167

    Cherevko, A.S. and Syso, A.I., Agrokhimiya, 2010, no. 11, p. 70.

  168. 168

    Yangmei, Z., J. Radioanal. Nucl. Chem., 2001, vol. 249, no. 1, p. 25.

    Article  Google Scholar 

  169. 169

    Rikhvanov, L.P., Arbuzov, S.I., Baranovskaya, N.V., Volostnov, A.V., Arkhangelskaya, T.A., Mezhibor, A.I., Berchuk, V.V., Zhornyak, L.V., Zamyatina, Yu.L., Ivanov, A.Yu., Talovskaya, A.V., Shatilova, S.S., and Yazikov, E.G., Bull. Tomsk Polytech. Univ., 2007, vol. 311, no. 1, p. 126.

    Google Scholar 

  170. 170

    Kučera, J., Byrne, A.R., Mizera, J., and Řanda, Z., J. Radioanal. Nucl. Chem., 2006, vol. 269, no. 2, p. 251.

    Article  Google Scholar 

  171. 171

    Maihara, V.A., Moura, P.L., Catharino, M.G., Castro, L.P., and Figueira, R.C.L., J. Radioanal. Nucl. Chem., 2008, vol. 278, no. 2, p. 395.

    CAS  Article  Google Scholar 

  172. 172

    Mizera, J., Randa, Z., and Kučera, J., J. Radioanal. Nucl. Chem., 2008, vol. 278, no. 3, p. 599.

    CAS  Article  Google Scholar 

  173. 173

    Greenberg, R.R., Bode, P., and Fernandes, E.A.N., Neutron activation analysis: a primary method of measurement, Spectrochim. Acta, Part B, 2011, vol. 66, nos. 3–4, p. 193.

    CAS  Article  Google Scholar 

  174. 174

    Robertus, Yu.V., Rikhvanov, L.P., Sitnikova, V.A., Savenko, K.S., and Bol’shunova, T.S., Izv. Tomsk. Politekh. Univ. Inzh. Georesur., 2018, vol. 329, no. 4, p. 70.

    Google Scholar 

  175. 175

    Scheloske, S. and Schneider, T., Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, vol. 189, nos. 1–4, p. 148.

    CAS  Google Scholar 

  176. 176

    Marguí, E., Queralt, I., and Hidalgo, M., TrAC, Trends Anal. Chem., 2009, vol. 28, no. 3, p. 362.

    Article  CAS  Google Scholar 

  177. 177

    Nikolova, E.L., Valcheva, R.D., and Angelov, Ch.V., Acta Zool. Bulg., 2018, vol. 11, p. 163.

    Google Scholar 

  178. 178

    Vanhoof, C., Bacon, J.R., Ellis, A.T., Fittschen, U.E.A., and Vincze, L., J. Anal. At. Spectrom., 2019, vol. 34, no. 9, p. 1750.

    CAS  Article  Google Scholar 

  179. 179

    Moor, K.L., Chen, Y., van de Meene, A.M.L., Hughes, L., Liu, W., Geraki, T., Mosselmans, F., McGrath, S.P., Grovenor, C., and Zhao, F.-J., New Psychol., 2014, vol. 201, no. 1, p. 104.

    Google Scholar 

  180. 180

    Reimann, C., Fabian, K., Flem, B., Andersson, M., Filzmoser, P., and Englmaier, P., Sci. Total Environ., 2018, vol. 639, p. 129.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  181. 181

    Sapkota, A., Krachler, M., Scholz, C., Cheburkin, A.K., and Shotyk, W., Anal. Chim. Acta, 2005, vol. 540, no. 2, p. 247.

    CAS  Article  Google Scholar 

  182. 182

    Michalska-Kacymirow, M., Kurek, E., Smolis, A., Wierzbicka, M., and Bulska, E., Anal. Bioanal. Chem., 2014, vol. 406, no. 15, p. 3717.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. 183

    Šerá, L., Loula, M., Matějková, S., and Mestek, O., Chem. Pap., 2019, vol. 73, no. 12, p. 3005.

    Article  CAS  Google Scholar 

  184. 184

    Murashkina, I.A., Mirovich, V.M., Gordeeva, V.V., and Chebykin, E.P., Vestn. Voronezh. Gos. Univ., Ser.: Khim. Biol. Farm., 2019, no. 4, p. 53.

  185. 185

    Shotyk, W., Ecol. Indic., 2020, vol. 110, 105960.

    CAS  Article  Google Scholar 

  186. 186

    Dombovári, J., Becker, J.S., and Dietze, H.-J., Fresenius’ J. Anal. Chem., 2000, vol. 367, no. 5, p. 407.

    Article  Google Scholar 

  187. 187

    Mattusch, J., Wennrich, R., Schmidt, A.C., and Reisser, W., Fresenius’ J. Anal. Chem., 2000, vol. 366, no. 2, p. 200.

    CAS  Article  Google Scholar 

  188. 188

    Ivanova, J., Korhammer, S., Djingova, R., Heidenreich, H., and Markert, B., Spectrochim. Acta, Part B, 2001, vol. 56, no. 1, p. 3.

    Article  Google Scholar 

  189. 189

    Larivière, D., Epov, V.N., Evans, R.D., and Cornett, R.J., J. Anal. At. Spectrom., 2003, vol. 18, p. 338.

    Article  CAS  Google Scholar 

  190. 190

    Bulska, E., Danko, B., Dybczyński, R.S., Krata, A., Kulisa, K., Samczyński, Z., and Wojciechowski, M., Talanta, 2012, vol. 97, p. 303.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  191. 191

    Carvalho Ramos, J. and Borges, D.L.G., J. Anal. At. Spectrom., 2014, vol. 29, no. 2, p. 304.

    Article  Google Scholar 

  192. 192

    Roux, P., Lemarchand, D., Hughes, H.J., and Turpault, M.P., Geostand. Geoanal. Res., 2015, vol. 39, no. 4, p. 453.

    CAS  Article  Google Scholar 

  193. 193

    Ni, Z., Ren, C., Cheng, J., and Tang, F., J. Braz. Chem. Soc., 2017, vol. 28, p. 1960.

    CAS  Google Scholar 

  194. 194

    Begu, E., Snell, B., and Arslan, Z., Microchem. J., 2019, vol. 145, p. 412.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  195. 195

    Balcaen, L., Bolea-Fernandez, E., Resano, M., and Vanhaecke, F., Anal. Chim. Acta, 2015, vol. 894, no. 24, p. 7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  196. 196

    Persson, D.P., Chen, A., Aarts, M.G.M., Salt, D.E., Schjoerring, J.K., and Husted, S., Plant Physiol., 2016, vol. 172, no. 2, p. 835.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197

    Pohl, P., Bielawska-Pohl, A., Dzimitrowicz, A., Greda, K., Jamroz, P., Lesniewicz, A., Szymczycha-Madeja, A., and Welna, M., J. Pharm. Biomed. Anal., 2018, vol. 159.

  198. 198

    Martin, M.Z., Labbe, N., Andre, N., Harris, R., Ebinger, M., Wullschleger, S.D., and Vass, A.A., Spectrochim. Acta, Part B, 2007, vol. 62, no. 12, p. 1426.

    Article  CAS  Google Scholar 

  199. 199

    Braga, J.W.B., Trevizan, L.C., Nunes, L.C., Rufini, I.A., Santos, D., and Krug, F.J., Spectrochim. Acta, Part B, 2010, vol. 65, no. 1, p. 66.

    Article  CAS  Google Scholar 

  200. 200

    Kaiser, J., Novotny, K., Martin, M.Z., Hrdlicka, A., Malina, R., Hartl, M., Adam, V., and Kizek, R., Surf. Sci. Rep., 2012, vol. 67, nos. 11–12, p. 233.

    CAS  Article  Google Scholar 

  201. 201

    Santos, D., Nunes, L.C., Gustinelli Arantes de Carvalho, G., da Silva Gomes, M., de Souza, P.F., de Oliveira Leme, F., Cofani dos Santos, L., and Krug, F.J., Spectrochim. Acta, Part B, 2012, vols. 71–72, p. 3.

    Article  CAS  Google Scholar 

  202. 202

    Markiewicz-Keszycka, M., Cama-Moncunill, X., Casado-Gavalda, M.P., and Dixit, Y., Trends Food Sci. Technol., 2017, vol. 65, p. 80.

    CAS  Article  Google Scholar 

  203. 203

    Senesi, G.S., Cabral, J., Menegatti, C.R., Marangoni, B., and Nicolodelli, G., TrAC, Trends Anal. Chem., 2019, vol. 118, p. 453.

    CAS  Article  Google Scholar 

  204. 204

    Cherevko, A.S. and Syso, A.I., J. Anal. Chem., 2009, vol. 64, no. 8, p. 806.

    CAS  Article  Google Scholar 

  205. 205

    Otmakhov, V.I., Rabtsevich, E.S., Petrova, E.V., Shilova, I.V., Sheleg, E.S., and Babenkov, D.E., Zavod. Lab., Diagn. Mater., 2019, vol. 85, no. 1, part 2, p. 60.

  206. 206

    Zaksas, N.P., Sultangazieva, T.T., and Korda, T.M., J. Anal. Chem., 2006, vol. 61, no. 6, p. 582.

    CAS  Article  Google Scholar 

  207. 207

    Perekotii, V.V., Kaunova, A.A., Petrov, V.I., Tsyupko, T.G., and Temerdashev, Z.A., Izv. Vyssh. Uchebn. Zaved., Pishch. Tekhnol., 2012, nos. 5–6(329–330), p. 101.

  208. 208

    Masson, P., Prunet, T., and Orignac, D., Microchim. Acta, 2006, vol. 154, no. 3, p. 229.

    CAS  Article  Google Scholar 

  209. 209

    Lee, Y.N. and Choi, H.-S., J. Anal. Chem., 2007, vol. 62, no. 9, p. 845.

    CAS  Article  Google Scholar 

  210. 210

    Chajduk, E. and Dybczyński, R.S., Microchim. Acta, 2010, vol. 168, nos. 1–2, p. 37.

    CAS  Article  Google Scholar 

  211. 211

    Arnold, T., Schönbächler, M., Rehkämper, M., Dong, S., Zhao, F.-J., Kirk, G.J.D., Coles, B.J., and Weiss, D.J., Anal. Bioanal. Chem., 2010, vol. 398, no. 7, p. 3115.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  212. 212

    Singh, S., Oswal, M., Behera, B.R., Kumar, A., Santra, S., Acharya, R., and Singh, K.P., J. Radioanal. Nucl. Chem., 2020, vol. 323, no. 3, p. 1443.

    CAS  Article  Google Scholar 

  213. 213

    Maher, W.A., Eggins, S., Krikowa, F., Jagtap, R., and Foster, S., J. Anal. At. Spectrom., 2017, vol. 32, no. 6, p. 1129.

    CAS  Article  Google Scholar 

  214. 214

    Trevizan, L.C., Santos, D., Jr., Samad, R.E., Dias Vieira, N., Jr., Nunes, L.C., Rufini, I.A., and Krug, F.J., Spectrochim. Acta, Part B, 2009, vol. 64, no. 5, p. 369.

    Article  CAS  Google Scholar 

  215. 215

    Weiss, D.J., Rausch, N., Mason, T.F.D., Coles, B.J., Wilkinson, J.J., Ukonmaanaho, L., Arnold, T., and Nieminen, T.M., Geochim. Cosmochim. Acta, 2007, vol. 71, no. 14, p. 3498.

    CAS  Article  Google Scholar 

  216. 216

    Navarrete, J.M., Longoria, L.C., Martínez, M.T., and Cabrera, L., J. Radioanal. Nucl. Chem., 2007, vol. 271, no. 3, p. 599.

    CAS  Article  Google Scholar 

  217. 217

    Owolabi, I.A., Mandiwana, K.L., and Panichev, N., S. Afr. J. Chem., 2016, vol. 69, p. 67.

    CAS  Article  Google Scholar 

  218. 218

    Shi, C., Gu, T., Bu, W., Yan, W., Liu, M., and Yan, M., Geostand. Geoanal. Res., 2008, vol. 32, no. 3, p. 337.

    CAS  Article  Google Scholar 

  219. 219

    Katz, S.A., J. Radioanal. Nucl. Chem., 2002, vol. 251, no. 1, p. 3.

    CAS  Article  Google Scholar 

  220. 220

    Lindstrom, R.M., Byrne, A.R., Becker, D.A., Smodiš, B., and Garrity, K.M., Fresenius’ J. Anal. Chem., 1990, vol. 338, no. 4, p. 569.

    CAS  Article  Google Scholar 

  221. 221

    Rimmer, C.A., Howerton, S.B., Sharpless, K.E., Sander, L.C., Long, S.E., Murphy, K.E., Porter, B.J., Putzbach, K., Rearick, M.S., Wise, S.A., Wood, L.J., Zeisler, R., Hancock, D.K., Yen, J.H., Betz, J.M., Nguyenpho, A., Yang, L., Scriver, C., Willie, S., Sturgeon, R., Schaneberg, B., Nelson, C., Skamarack, J., Pan, M., Levanseler, K., Gray, D., Waysek, E.H., Blatter, A., and Reich, E., Anal. Bioanal. Chem., 2007, vol. 389, no. 1, p. 179.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  222. 222

    Steger, H.F., Geostand. Newsl., 1981, vol. 5, no. 2, p. 189.

    Article  Google Scholar 

  223. 223

    Ihnat, M., Anal. Bioanal. Chem., 2001, vol. 370, nos. 2–3, p. 279.

    CAS  Google Scholar 

  224. 224

    Kramer, G.N., Muntau, H., Maier, E., and Pauwels, J., Fresenius’ J. Anal. Chem., 1998, vol. 360, nos. 3–4, p. 299.

    CAS  Article  Google Scholar 

  225. 225

    Quevauviller, P., TrAC, Trends Anal. Chem., 1999, vol. 18, no. 5, p. 302.

    CAS  Article  Google Scholar 

  226. 226

    Griepink, B., Muntau, H., and Colinet, E., Fresenius’ J. Anal. Chem., 1983, vol. 315, no. 3, p. 193.

    CAS  Article  Google Scholar 

  227. 227

    Maier, E.A., Muntau, H., and Griepink, B., Fresenius’ J. Anal. Chem., 1989, vol. 335, no. 7, p. 833.

    CAS  Article  Google Scholar 

  228. 228

    Maier, E.A., Griepink, B., Quevauviller, P., De Angelis, L., and Muntau, H., Microchim. Acta, 1990, vol. 102, nos. 1–3, p. 87.

    Article  Google Scholar 

  229. 229

    Quevauviller, P., Vercoutere, K., and Griepink, B., Anal. Chim. Acta, 1992, vol. 259, no. 2, p. 281.

    CAS  Article  Google Scholar 

  230. 230

    Quevauviller, P., Herzig, R., and Muntau, H., Sci. Total Environ., 1996, vol. 187, no. 2, p. 143.

    CAS  Article  Google Scholar 

  231. 231

    Herzig, R., Rehnert, A., Korhammer, S., Kumpulainen, J., Schramel, P., Muntau, H., Linsinger, T., and Quevauviller, P., TrAC, Trends Anal. Chem., 2002, vol. 21, no. 11, p. 746.

    CAS  Article  Google Scholar 

  232. 232

    Linsinger, T.P.J., Roebben, G., Solans, C., and Ramsch, R., TrAC, Trends Anal. Chem., 2011, vol. 30, no. 1, p. 18.

    CAS  Article  Google Scholar 

  233. 233

    Ghidan, O.Y. and Loss, R.D., Geostand. Geoanal. Res., 2010, vol. 34, no. 2, p. 185.

    CAS  Article  Google Scholar 

  234. 234

    Parr, R.M., Schelenz, R., and Ballestra, S., Fresenius’ Z. Anal. Chem., 1988, vol. 332, no. 6, p. 518.

    CAS  Article  Google Scholar 

  235. 235

    Parr, R.M., Fajgelj, A., Dekner, R., Vera Ruiz, H., Carvalho, F.P., and Povinec, P.P., Fresenius’ J. Anal. Chem., 1998, vol. 360, nos. 3–4, p. 287.

    CAS  Article  Google Scholar 

  236. 236

    Arunachalam, J., Bleise, A., Mahwar, R.S., Ramadevi, P., and Iyengar, G.V., J. Food Compos. Anal., 2006, vol. 19, nos. 2–3, p. 241.

    Article  Google Scholar 

  237. 237

    Ihnat, M., Fresenius’ Z. Anal. Chem., 1988, vol. 332, no. 6, p. 568.

    CAS  Article  Google Scholar 

  238. 238

    Kramer, G.N., Pauwels, J., and Belliardo, J.J., Preparation of biological and environmental reference materials at cbnm, Fresenius’ J. Anal. Chem., 1993, vol. 345, nos. 2–4, p. 133.

    CAS  Article  Google Scholar 

  239. 239

    Ihnat, M., Dabeka, R.W., and Wolynetz, M.S., Fresenius’ J. Anal. Chem., 1993, vol. 345, nos. 2–4, p. 221.

    CAS  Article  Google Scholar 

  240. 240

    Lamberty, A., Schimmel, H., and Pauwels, J., Fresenius’ J. Anal. Chem., 1998, vol. 360, nos. 3–4, p. 359.

    CAS  Article  Google Scholar 

  241. 241

    Linsinger, T.P.J., Bernreuther, A., Corbisier, P., Dabrio, M., Emteborg, H., Held, A., Lamberty, A., Lapitajs, G., Ricci, M., Roebben, G., Trapmann, S., Ulberth, F., and Emons, H., Accredit. Qual. Assur., 2007, vol. 12, nos. 3–4, p. 167.

    Article  Google Scholar 

  242. 242

    Ulberth, F., Anal. Bioanal. Chem., 2006, vol. 386, no. 4, p. 1121.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  243. 243

    Van Dijk, D., Commun. Soil Sci. Plant Anal., 2002, vol. 33, nos. 15–18, p. 2457.

    CAS  Article  Google Scholar 

  244. 244

    Houba, V.J.G., Novozamsky, I., and van der Lee, J.J., Sci. Total Environ., 1995, vol. 176, nos. 1–3, p. 73.

    CAS  Article  Google Scholar 

  245. 245

    Van Dijk, D. and Houba, V.J.G., Commun. Soil Sci. Plant Anal., 2000, vol. 31, nos. 11–14, p. 1745.

    CAS  Article  Google Scholar 

  246. 246

    Novozamsky, I., Houba, V.J.G., and Daniel, R.C., Fresenius’ J. Anal. Chem., 1993, vol. 345, nos. 2–4, p. 198.

    CAS  Article  Google Scholar 

  247. 247

    Houba, V.J.G., Uittenbogaard, J., and Pellen, P., Commun. Soil Sci. Plant Anal., 1996, vol. 27, nos. 3–4, p. 421.

    CAS  Article  Google Scholar 

  248. 248

    Armishaw, P. and Millar, R., Anal. Bioanal. Chem., 2001, vol. 370, nos. 2–3, p. 291.

    CAS  Google Scholar 

  249. 249

    Polkowska-Motrenko, H. and Dybczyński, R., J. Radioanal. Nucl. Chem., 2006.

  250. 250

    Holynska, B., Jasion, J., Lankosz, M., and Ostrowski, A., Fresenius’ Z. Anal. Chem., 1987, vol. 328, no. 7, p. 588.

    CAS  Article  Google Scholar 

  251. 251

    Dybczyński, R., Danko, B., and Polkowska-Motrenko, H., Anal. Bioanal. Chem., 2001, vol. 370, nos. 2–3, p. 126.

    Google Scholar 

  252. 252

    Samczyński, Z., Dybczyński, R.S., Polkowska-Motrenko, H., Chajduk, E., Pyszynska, M., Danko, B., Czerska, E., Kulisa, K., Doner, K., and Kalbarczyk, sP., Sci. World J., 2012, vol. 2012, 216380.

    Article  CAS  Google Scholar 

  253. 253

    Dybczyński, R., Danko, B., Kulisa, K., Chajduk-Maleszewska, E., Polkowska-Motrenko, H., Samczyński, Z., and Szopa, Z., J. Radioanal. Nucl. Chem., 2004, vol. 259, no. 3, p. 409.

    Article  Google Scholar 

  254. 254

    Makarevich, V.I. and Plesnetsova, O.A., Stand. Obraztsy, 2008, no. 1, p. 45.

  255. 255

    Shafrinskii, Yu.S., Zh. Anal. Khim., 1977, vol. 32, no. 7, p. 1429.

    Google Scholar 

  256. 256

    Lontsikh, S.V. and Petrov, L.L., Standartnye obraztsy sostava prirodnykh sred (Reference Materials for the Composition of Natural Media), Novosibirsk: Nauka, 1988.

  257. 257

    Catalogue of the Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences. http://www.igc.irk.ru/ru/component/flexicontent/item/3412-standartnye-obraztsy-sostava?Itemid=746. Accessed June 2, 2020.

  258. 258

    Vasil’eva, I.E., Shabanova, E.V., Susloparova, V.E., and Manokhina, S.N., Stand. Obraztsy, 2014, no. 3, p. 24.

  259. 259

    Mahwar, R.S., Verma, N.K., Chakrabarti, S.P., and Biswas, D.K., Fresenius’ J. Anal. Chem., 1998, vol. 360, nos. 3–4, p. 291.

    CAS  Article  Google Scholar 

  260. 260

    Alam, Z., Kaur, S., and Porwal, P.K., Accredit. Qual. Assur., 2018, vol. 23, no. 6, p. 319.

    Article  Google Scholar 

  261. 261

    Bahl, J.R., Bansal, R.P., Goel, R., and Kumar, S., Indian J. Nat. Prod. Resour., 2015, vol. 6, no. 2, p. 127.

    Google Scholar 

  262. 262

    Yan, M. and Cheng, Z., Geostand. Geoanal. Res., 2007, vol. 31, no. 4, p. 301.

    CAS  Article  Google Scholar 

  263. 263

    Okamoto, K., Fresenius’ Z. Anal. Chem., 1988, vol. 332, no. 6, p. 524.

    CAS  Article  Google Scholar 

  264. 264

    Okamoto, K., Mar. Environ. Res., 1988, vol. 26, no. 3, p. 199.

    Article  Google Scholar 

  265. 265

    Okamoto, K., Yoshinaga, J., and Morita, M., Microchim. Acta, 1996, vol. 123, nos. 1–4, p. 15.

    CAS  Article  Google Scholar 

  266. 266

    Certified Reference Materials Catalogue of Korea, Research Institute of Standards and Science. www.kriss.re.kr/eng/file/20141215crm.pdf. Accessed July 2, 2020.

  267. 267

    Tagliaferro, F.S., De Nadai, FernandesE.A., and Bacchi, M.A., J. Radioanal. Nucl. Chem., 2006, vol. 269, no. 2, p. 371.

    CAS  Article  Google Scholar 

  268. 268

    Martínez, M.I.V., Zeisler, R., De Nadai Fernandes, E.A., and Bacchi, M.A., Accredit. Qual. Assur., 2018, vol. 23, no. 6, p. 329.

    Article  CAS  Google Scholar 

  269. 269

    Steiger, Th. and Pradel, R., Accredit. Qual. Assur., 2007, vol. 12, no. 5, p. 265.

    CAS  Article  Google Scholar 

  270. 270

    Eggen, O.A., Reimann, C., and Flem, B., Sci. Total Environ., 2019, vol. 670, p. 138.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Funding

The work was performed within the State Assignment for the Project IX.127.1.4 no. 0350-2019-0005.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. E. Vasil’eva.

Additional information

Translated by E. Rykova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasil’eva, I.E., Shabanova, E.V. Plant-Matrix Certified Reference Materials as a Tool for Ensuring the Uniformity of Chemical Measurements. J Anal Chem 76, 137–155 (2021). https://doi.org/10.1134/S1061934821020143

Download citation

Keywords:

  • certified reference materials
  • plant materials
  • elemental composition
  • methods of chemical analysis
  • ensuring uniformity of measurements