Abstract
The role of plant-matrix certified reference materials as instruments ensuring the uniformity of measurements and the reliability of the results in performing ecological research and the production of foodstuffs and medicines is discussed. Specific features of the composition of plants as of test materials for chemical analysis and requirements to the methods of its determination are considered from the viewpoint of the provision of traditional agricultural tasks and geochemical, ecological, and medicobiological projects with certified reference materials. International and Russian regulatory documents on the preparation of certified reference materials taking into account the limited concentrations of toxic elements in plant materials are presented. Various content of classes of the existing plant-matrix certified, reference and for quality control materials of different producers are noted. The need in the expansion of the list of matrix certified reference materials for ensuring the reliability of analytical procedures in using methods of chemical analysis of plant materials and the consistency of their results is shown.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.



REFERENCES
- 1
Kabata-Pendias, A., Trace Elements in Soils and Plants, New York: Taylor and Francis, 2011, 4th ed.
- 2
Reimann, C., Koller, F., Frengstad, B., Kashulina, G., Niskavaara, H., and Englmaier, P., Sci. Total Environ., 2001, vol. 278, nos. 1–3, p. 87.
- 3
Buck, B.J., London, S.C., McLaurin, B.T., Metcalf, R., Mouri, H., Selinus, O., and Shelembe, R., Environ. Earth Sci., 2016, vol. 75, no. 6, 449.
- 4
Markert, B., Water, Air, Soil Pollut., 1992, vol. 64, nos. 3–4, p. 533.
- 5
Owen, J.D., Kirton, S.B., Evans, S.J., and Stair, J.L., J. Pharm. Biomed. Anal., 2016, vol. 125, no. 5, p. 15.
- 6
Vasil’eva, I.E. and Shabanova, E.V., J. Anal. Chem., 2017, vol. 72, no. 2, p. 129.
- 7
GOST (State Standard) 8.315-97: State System for Ensuring the Uniformity of Measurements. Certified Reference Materials of Composition and Properties of Substances and Materials. Basic Principles, Moscow: Standartinform, 2010.
- 8
ISO/IEC Guide 99:2007: International Vocabulary of Metrology. Basic and General Concepts and Associated Terms (VIM), Geneva: ISO, 2007.
- 9
GOST (State Standard) 32934-2014 (ISO Guide 30:1992): Reference Materials. Terms and Definitions Used in Connection with Reference Materials, Moscow: Standartinform, 2015.
- 10
ISO Guide 30:2015: Reference Materials. Selected Terms and Definitions, Geneva: BSI, 2015.
- 11
GOST (State Standard) 8.531-2002: State System for Ensuring the Uniformity of Measurements. Reference Materials of Composition of Solid and Disperse Materials. Ways of Homogeneity Assessment, Moscow: Izd. Standartov, 2003.
- 12
GOST (State Standard) 8.532-2002: State System for Ensuring the Uniformity of Measurements. Certified Reference Materials of Composition of Substances and Materials. Interlaboratory Metrological Certification. Content and Order of Works, Moscow: Izd. Standartov, 2002.
- 13
ISO Guide 31:2015: Reference Materials. Contents of Certificates, Labels and Accompanying Documentation, Geneva: BSI, 2015.
- 14
ISO Guide 33:2015: Reference Materials. Good Practice in Using Reference Materials, Geneva: BSI, 2015.
- 15
ISO/IEC Guide 98-3:2008: Uncertainty of Measurement. Guide to the Expression of Uncertainty in Measurement, Geneva: ISO, 2008.
- 16
GOST (State Standard) ISO Guide 35-2015: Reference Materials. General and Statistical Principles for Certification, Moscow: Standartinform, 2017.
- 17
Linsinger, T.P.J. and Emons, H., Chimia, 2009, vol. 63, no. 10, p. 629.
- 18
Olivares, I.R.B., Souza, G.B., Nogueira, A.R.A., Toledo, G.T.K., and Marcki, D.C., TrAC, Trends Anal Chem., 2018, vol. 100, p. 53.
- 19
Hulme, N. and Hammond, J., Spectrosc. Eur., 2020, vol. 32, no. 1, p. 14.
- 20
Federal Law of the Russian Federation of January 10, 2002, no. 7-FZ “On Environmental Protection,” Moscow, 2001.
- 21
Decree of the President of the Russian Federation of January 21, 2020, no. 20 “On Approval of the Doctrine of Food Security of the Russian Federation.”
- 22
Federal Law of the Russian Federation of June 26, 2008, no. 102-FZ “On Ensuring the Uniformity of Measurements,” Moscow, 2008.
- 23
GOST (State Standard) ISO/IEC 17025-2019: General Requirements for the Competence of Testing and Calibration Laboratories, Moscow: Standartinform, 2019.
- 24
May, W., Parris, R.II., Beck, C., Fassett, J., Greenberg, R., Guinther, F., Kramer, G., Wise, S., Gills, T., Colbert, J., Gettings, R., and MacDonald, B., Definition of terms and models used at NIST for value-assignment of reference materials for chemical measurements, NIST Spec. Publ. 260-136, Gaithersburg: Natl. Inst. Standards Technol., 2000.
- 25
Mengel, K., Kirkby, E.A., Kosegarten, H., and Appel, T., Principles of Plant Nutrition, Dordrecht: Springer, 2001.
- 26
ITRC: Phytotechnology Technical and Regulatory Guidance Document, ITRC, 2001.
- 27
Maurice, P.A., Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale, New York: Wiley, 2009.
- 28
Epstein, E., Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, no. 1, p. 11.
- 29
Hodson, M.J., White, P.J., Mead, A., and Broadley, M.R., Ann. Bot., 2005, vol. 96, no. 6, p. 1027.
- 30
Kashin, V.K., Chem. Sustainable Dev., 2011, vol. 19, no. 3, p. 237.
- 31
Reshetov, Ya.E., Belousov, M.V., Avdeeva, E.Yu., and Shurupova, M.N., Khim. Rastit. Syr’ya, 2018, no. 4, p. 205.
- 32
Vasil’eva, I.E. and Shabanova, E.V., Analitika Kontrol’, 2019. T. 23, no. 3, p. 298.
- 33
Khramova, E.P., Boyarskikh, I.G., Chankina, O.V., and Kutsenogii, K.P., Rastit. Mir Aziat. Ross., 2011, vol. 8, no. 2, p. 104.
- 34
Zubkov, N.V. and Zubkova, V.M., Vestn. Mosk. Gor. Ped. Univ., Ser.: Estestv. Nauki, 2010, no. 2, p. 43.
- 35
Wiggenhauser, M., Bigalke, M., Imseng, M., Keller, A., Archer, C., Wilcke, W., and Frossard, E., New Phytol., 2018, vol. 219, no. 1, p. 195.
- 36
Shilova, I.V., Baranovskaya, N.V., Mustafin, R.N., and Suslov, N.I., Khim. Rastit. Syr’ya, 2019, no. 4, p. 191.
- 37
Eisenhardt de Mello, J., la Rosa Novo, D., Silva Coelho, G., Jr., Tessmer Scaglioni, P., and Foster Mesko, M., Food Anal. Methods, 2020, vol. 13, no. 1, p. 131.
- 38
Bowen, H.J.M., Analyst, 1967, vol. 92, no. 1091, p. 124.
- 39
Selina, M., Drolc, A., Selina, L., and Levei, E., J. Anal. Sci. Technol., 2014, vol. 5.
- 40
Walton, J.R., in Encyclopedia of Environmental Health, Nriagu, J.O., Ed., New York: Elsevier, 2019 2nd ed., p. 328.
- 41
Chang, H.F., Wang, S.L., Lee, D.C., Hsiao, S.S.Y., Hashimoto, Y., and Yeh, K.C., J. Hazard Mater., 2020, vol. 387, 121983.
- 42
Cassidy, N.G., Plant Soil, 1966, vol. 25, no. 3, p. 372.
- 43
Jeyakumar, P. and Balamohan, T.N., Diagnosis of nutritional disorders. http://www.agritech.tnau.ac.in/agriculture/PDF/Diagnosis%20of%20nutritional%20disorders.pdf. Accessed April 1, 2020.
- 44
Yagodin, B.A., Zhukov, Yu.P., and Kobzarenko, V.I., Agrokhimiya (Agrochemistry), Yagodin, B.A., Ed., Moscow: Kolos, 2002.
- 45
Kovalevskii, A.L., Geochem.: Explor., Environ., Anal., 2001, vol. 1, no. 2, p. 143.
- 46
Zimmermann, S., Messerschmidt, J., Von Bohlen, A., and Sures, B., Anal. Chim. Acta, 2003, vol. 498, nos. 1–2, p. 93.
- 47
Dongarrá, G., Varrica, D., and Sabatino, G., Appl. Geochem., 2003, vol. 18, no. 1, p. 109.
- 48
Ravindra, K., Bencs, L., and Van Grieken, R., Sci. Total Environ., 2004, vol. 318, nos. 1–3, p. 1.
- 49
Reimann, C. and Niskavaara, H., in Palladium Emissions in the Environment, Zereini, F. and Alt, F., Eds., Berlin: Springer, 2006, p. 53.
- 50
Pshenichkina, Y.A. and Pshenichkin, A.Y., Contemp. Probl. Ecol., 2018, vol. 11, no. 2, p. 221.
- 51
Jurkin, D., Zgorelec, Z., and Rinkovec, J., J. Cent. Eur. Agric., 2019, vol. 20, no. 2, p. 686.
- 52
Kramer, K.J.M., De Haan, E.P.M., Groenewoud, H.V.H., Dorten, W., Kramer, G.N., Muntau, H., and Quevauviller, P., TrAC, Trends Anal. Chem., 2002, vol. 21, no. 11, p. 762.
- 53
Tyler, G., Plant Soil, 2004, vol. 267, nos. 1–2, p. 191.
- 54
Kovalsky, VV., Philos. Trans. R. Soc., B, 1979, vol. 288, no. 1026, p. 185.
- 55
Kovalevskii, A.L., Biogeokhimiya rastenii (Plant Biogeochemistry), Novosibirsk: Nauka, 1991.
- 56
Nagajyoti, P.C., Lee, K.D., and Sreekanth, T.V.M., Environ. Chem. Lett., 2010, no. 8, p. 199.
- 57
Shafigullin, D.R., Teor. Prikl. Probl. Agroprom. Kompleksa., 2019, vol. 41, no. 3, p. 30.
- 58
García-Delgado, C., Cala, V., and Eymar, E., Talanta, 2012, vol. 88, p. 375.
- 59
Khan, A., Khan, S., Khan, M.A., Qamar, Z., and Waqas, M., Environ. Sci. Pollut. Res., 2015, vol. 22, no. 18, p. 13772.
- 60
Cloquet, C., Carignan, J., Lehmann, M.F., and Vanhaecke, F., Anal. Bioanal. Chem., 2008, vol. 390, no. 2, p. 451.
- 61
Bolou-Bi, E.B., Vigier, N., Brenot, A., and Poszwa, A., Geostand. Geoanal. Res., 2009, vol. 33, no. 1, p. 95.
- 62
Xiao, J., Vogl, J., Rosner, M., Deng, L., and Jin, Z., Talanta, 2019, vol. 196, p. 389.
- 63
Wolf, W.R. and Andrews, K.W., Fresenius’ J. Anal. Chem., 1995, vol. 352, no. 1, p. 73.
- 64
Wise, S.A. and Phillips, M.M., Anal. Bioanal. Chem., 2019, vol. 411, no. 1, p. 97.
- 65
Li, Y., Wang, Y., Gou, X., Su, Y., and Wang, G., J. Environ. Sci., 2006, vol. 18, no. 6, p. 1124.
- 66
Anunciação, D.S., Leao, D.J., de Jesus, R.M., and Ferreira, S.L.C., Food Anal. Methods, 2011, vol. 4, p. 286.
- 67
do Carmo Federici Padilha, C., de Martin Moraes, P., de Arruda Garcia, L., Costa Pozzi, M.C., Pace Pereira Lima, G., Serra Valente, J.P., Alves Jorge, S.M., and de Magalhaes Padilha, P., Food Anal. Methods, 2011, vol. 4, no. 3, p. 319.
- 68
Zivkovic, S., Savovic, J., Kuzmanovic, M., Petrovic, J., and Momcilovic, M., Microchem. J., 2018, vol. 137, p. 410.
- 69
Pardinho, R.B., Dalla VecchiaP., Mendes, A.L.G., Bizzi, C.A., Mello, P.A., Duarte, F.A., and Flores, E.M.M., Food Chem., 2018, vol. 263, p. 37.
- 70
Gamela, R.R., Costa, V.C., and Pereira-Filho, E.R., Food Anal. Methods, 2020, vol. 13, no. 1, p. 69.
- 71
Titarenko, V.O., Kaunova, A.A., Temerdashev, Z.A., and Popandopulo, V.G., Analitika Kontrol’, 2016, vol. 20, no. 2, p. 138.
- 72
Milićević, T., Relić, D., Urošević, M.A., Vuković, G., Škrivanj, S., Samson, R., and Popović, A., Ecotoxicol. Environ. Saf., 2018, vol. 163, no. 15, p. 245.
- 73
Rai, P.K., Lee, S.S., Zhang, M., Tsang, Y.F., and Kim, K.H., Environ. Int., 2019, vol. 125, p. 365.
- 74
Barbosa, R.M., Batista, B.L., Varrique, R.M., Coelho, V.A., Campiglia, A.D., and Barbosa, F., Jr., Food Res. Int., 2014, vol. 61, no. 7, p. 246.
- 75
Syso, A.I., Syromlya, T.I., Myadelets, M.A., and Cherevko, A.S., Contemp. Probl. Ecol., 2016, vol. 9, no. 5, p. 643.
- 76
Habte, G., Hwang, I.M., Kim, J.S., Hong, J.H., Hong, Y.S., Choi, J.Y., Nho, E.Y., Jamila, N., Khan, N., and Kim, K.S., Food Chem., 2016, vol. 212, p. 512.
- 77
Allan, M., Le Roux, G., De Vleeschouwer, F., Bindler, R., Blaauw, M., Piotrowska, N., Sikorski, J., and Fagel, N., Environ. Pollut., 2013, vol. 178, p. 381.
- 78
Malea, P. and Kevrekidis, T., Sci. Total Environ., 2013, vols. 463–464, p. 611.
- 79
Wu, Q., Wang, S., Wang, L., Liu, F., Lin, C.J., Zhang, L., and Wang, F., Sci. Total Environ., 2014, vol. 496, p. 668.
- 80
Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., and Niazi, N.K., J. Hazard. Mater., 2017, vol. 325, p. 36.
- 81
Brooks, R.R., Biological Methods of Prospecting for Minerals, New York: Wiley, 1983.
- 82
Krämer, U., Annu. Rev. Plant Biol., 2010, vol. 61, no. 1, p. 517.
- 83
Reeves, R.D. and Baker, A.J.M., in Phytoremediation of Toxic Metals; Using Plants to Clean up the Environment, Raskin, I. and Ensley, B.D., Eds., New York: Wiley, 2000, p. 193.
- 84
Álvarez, E., Fernández, M.L., Vaamonde, C., and Fernández, M.J., Sci. Total Environ., 2003, vol. 313, nos. 1–3, p. 185.
- 85
Bettinelli, M., Perotti, M., Spezia, S., Baffi, C., Maria Beone G., Alberici, F., Bergonzi, S., Bettinelli, C., Cantarini, P., and Mascetti, L., Microchem. J., 2002, vol. 73, nos. 1–2, p. 131.
- 86
Nečemer, M., Kump, P., Ščančar, J., Jaćimović, R., Simčič, J., Pelicon, P., Budnar, M., Jeran, Z., Pongrac, P., Regvar, M., and Vogel-Mikuš, K., Spectrochim. Acta, Part B, 2008, vol. 63, no. 11, p. 1240.
- 87
Kroukamp, E.M., Wondimu, T., and Forbes, P.B.C., TrAC, Trends Anal. Chem., 2016, vol. 77, p. 87.
- 88
Elshamy, M.M., Heikal, Y.M., and Bonanomi, G., Chemosphere, 2019, vol. 225, p. 678.
- 89
Thompson, M., J. Geochem. Explor., 1992, vol. 44, nos. 1–3, p. 3.
- 90
Koval, P.V., Burenkov, E.K., and Golovin, A.A., J. Geochem. Explor., 1995, vol. 55, nos. 1–3, p. 115.
- 91
Xie, X., Analyst, 1995, vol. 120, no. 5, p. 1497.
- 92
Blaser, P., Zimmermann, S., Luster, J., and Shotyk, W., Sci. Total Environ., 2000, vol. 249, nos. 1–3, p. 257.
- 93
Wang, X., Zhang, Q., and Zhou, G., Geostand. Geoanal. Res., 2007, vol. 31, no. 4, p. 311.
- 94
Inácio, M., Pereira, V., and Pinto, M., J. Geochem. Explor., 2008, vol. 98, no. 1, p. 22.
- 95
Korobova, E., Romanov, S., and Silenok, A., Environ. Geochem. Health, 2019, vol. 42, p. 2595.
- 96
Szczepaniak, K. and Biziuk, M., Environ. Res., 2003, vol. 93, no. 3, p. 221.
- 97
Aubert, D., Le Roux, G., Krachler, M., Cheburkin, A., Kober, B., Shotyk, W., Stille, P., Geochim. Cosmochim. Acta, 2006, vol. 70, no. 11, p. 2815.
- 98
Lubbe, A. and Verpoorte, R., Ind. Crops Prod., 2011, vol. 34, no. 1, p. 785.
- 99
Bayandina, I.I. and Zagurskaya, Yu.V., Sib. Med. Zh. (Irkutsk), 2014, no. 8, p. 107.
- 100
Gusev, N.F., Petrova, G.V., Filippova, A.A., and Nemereshina, O.N., Izv. Orenb. Gos. Agrar. Univ., 2014, no. 2(46), p. 167.
- 101
Tinkov, A.A., Ajsuvakova, O.P., Skalnaya, M.G., Popova, E.V., Sinitskii, A.I., Nemereshina, O.N., and Skalny, A.V., BioMetals, 2015, vol. 28, no. 2, p. 231.
- 102
Rodushkin, I., Ödman, F., and Holmström, H., Sci. Total Environ., 1999, vol. 231, no. 1, p. 53.
- 103
Rodushkin, I., Engström, E., Sörlin, D., and Baxter, D., Sci. Total Environ., 2008, vol. 392, nos. 2−3, p. 290.
- 104
Ramazanov, A.Sh., Balaeva, Sh.A., and Shakhbanov, K.Sh., Khim. Rastit. Syr’ya, 2019, no. 2, p. 113.
- 105
Siromlya, T.I. and Zagurskaya, Yu.V., Khim. Rastit. Syr’ya, 2019, no. 2, p. 179.
- 106
Bakova, E.Yu., Plugatar’, Yu.V., Bakova, N.N., and Konovalov, D.A., Khim. Rastit. Syr’ya, 2019, no. 3, p. 217.
- 107
Dylenova, E.P., Zhigzhitzhapova, S.V., Randalova, T.E., Radnaeva, L.D., Shiretorova, V.G., and Pavlov, I.A., Khim. Rastit. Syr’ya, 2019, no. 4, p. 199.
- 108
World Health Organization Drug Information. Herbal Medicines, Geneva, 2002, vol. 16, no. 2, p. 115.
- 109
Antipova, E.A. and Leites, E.A., Khim. Rastit. Syr’ya, 2019, no. 2, p. 189.
- 110
Jorhem, L., Fresenius’ J. Anal. Chem., 1998, vol. 360, nos. 3–4, p. 370.
- 111
World Health Organization. National Policy on Traditional Medicine and Regulation of Herbal Medicines: Report of a WHO Global Survey, Geneva, 2007.
- 112
Gosudarstvennaya farmakopeya Rossiiskoi Federatsii (State Pharmacopoeia of the Russian Federation), Moscow, 2016, 13th ed. www.rosminzdrav.ru/poleznye-resursy/gosudarstvennaya-farmakopeya-rossiyskoy-federatsii-xiii-izdaniya. Accessed November 18, 2018.
- 113
Gosudarstvennaya farmakopeya Rossiiskoi Federatsii (State Pharmacopoeia of the Russian Federation), Moscow, 2018, 14th ed. http://www.femb.ru/femb/pharmacopea.php. Accessed July 2, 2020.
- 114
SanPin (Sanitary Regulation) 2.3.2.1078-01: Hygienic Requirements for the Quality and Safety of Food Stock and Food Products, chapters “General Provisions,” “1.10. Dietary Food Supplements,” and “1.10.7. Plant-Based Dietary Supplements, Including Pollen,” Moscow, 2001, 2009.
- 115
Ernst, E. and Thompson Coon, J., Clin. Pharmacol. Ther., 2001, vol. 70, no. 6, p. 497.
- 116
Ernst, E., Eur. J. Clin. Pharmacol., 2002, vol. 57, no. 12, p. 891.
- 117
United States Pharmacopeia, General Chapter no. 232: Elemental Impurities—Limits, USP 40-NF35, 1st suppl., December 1, 2017. www.usp.org/sites/default/files/usp/document/our-work/chemical-medicines/key-issues/232-40-35-1s.pdf. Accessed July 2, 2020.
- 118
United States Pharmacopeia. General Chapter no. 233: Elemental Impurities—Procedures, USP 38–NF 33, 2nd suppl. www.usp.org/sites/default/files/usp/document/our-work/chemical-medicines/key-issues/c233.pdf. Accessed July 2, 2020.
- 119
International Union for Conservation of Nature and Natural Resources, 2010.1. IUCN Red List of Threatened Species: Summary Statistics. www.iucnredlist.org. Accessed July 2, 2020.
- 120
International Union for Conservation of Nature and Natural Resources, 2020. The IUCN Red List of Threatened Species, ver. 2020-1. www.iucnredlist.org. Accessed July 2, 2020.
- 121
Plant Analysis Procedures, Temminghoff, E.E.J.M. and Houba, V.J.G., Eds., Dordrecht: Kluwer, 2004, 2nd ed.
- 122
Karyakin, A.V. and Gribovskaya, I.F., Emissionnyi spektral’nyi analiz ob’’ektov biosfery (Emission Spectral Analysis of Biosphere Objects), Moscow: Khimiya, 1979.
- 123
Korhammer, S., Herzig, R., Schramel, P., Kumpulainen, J., Markert, B., Muntau, H., and Quevauviller, P., Accredit. Qual. Assur., 2000, vol. 5, no. 6, p. 238.
- 124
Hussain, J., Bahader, A., Ullah, F., Rehman, N.U., Khan, A.L., Ullah, W., and Shinwari, Z.K., J. Am. Sci., 2009, vol. 6, no. 5, p. 91.
- 125
Medvedevskikh, M.Yu., Sergeeva, A.S., Krashenini-na, M.P., and Shokhina, O.S., Zavod. Lab., Diagn. Mater., 2019, vol. 85, no. 6, p. 70.
- 126
Hoenig, M., Talanta, 2001, vol. 54, p. 1021.
- 127
Momen, A.A., Zachariadis, G.A., Anthemidis, A.N., and Stratis, J.A., Microchim. Acta, 2008, vol. 160, no. 4, p. 397.
- 128
Maichin, B., Zischka, M., and Knapp, G., Anal. Bioanal. Chem., 2003, vol. 376, no. 5, p. 715.
- 129
Nascentes, C.C., Korn, M., and Arruda, M.A., Microchem. J., 2001, vol. 69, no. 1, p. 37.
- 130
Domínguez-González, R., Moreda-Piñeiro, A., Bermejo-Barrera, A., and Bermejo-Barrera, P., Talanta, 2005, vol. 66, no. 4, p. 937.
- 131
Carvalho Santos, W.P., Teixeira Castro, J., Almeida Bezerra, M., Pires Fernandes, A., Costa Ferreira, S.L., and Graças Andrade Korn, M., Microchem. J., 2009, vol. 91, no. 2, p. 153.
- 132
De La Calle, I., Costas, M., Cabaleiro, N., Lavilla, I., and Bendicho, C., Food Chem., 2013, vol. 138, no. 1, p. 234.
- 133
Orlov, S.V., Orlova, V.A., and Sychev, V.G., Plodorodie, 2002, no. 5(8), p. 25.
- 134
Borkowska-Burnecka, J., Fresenius’ J. Anal. Chem., 2000, vol. 368, no. 6, p. 633.
- 135
Baffi, C., Bettinelli, M., Beone, G.M., and Spezia, S., Chemosphere, 2002, vol. 48, no. 3, p. 299.
- 136
Krachler, M., Mohl, C., Emons, H., and Shotyk, W., Spectrochim. Acta, Part B, 2002, vol. 57, no. 8, p. 1277.
- 137
Silva, M.M., Vale, M.G.R., Fereira Damin, I.C., Welz, B., Mandaji, M., and Fett, J.P., Anal. Bioanal. Chem., 2003, vol. 377, no. 1, p. 165.
- 138
Sucharova, J. and Suchara, I., Anal. Chim. Acta, 2006, vol. 576, no. 2, p. 163.
- 139
Konieczynski, P. and Wesolowski, M., Food Chem., 2007, vol. 103, no. 1, p. 210.
- 140
Chen, L., Song, D., Tian, Y., Ding, L., Yu, A., and Zhang, H., TrAC, Trends Anal. Chem., 2008, vol. 27, no. 2, p. 151.
- 141
Mesko, M.F., Picoloto, R.S., Ferreira, L.R., Costa, V.C., Pereira, C.M.P.P., Colepicolo, P., Muller, E.I., and Flores, E.M.M., J. Anal. At. Spectrom., 2015, vol. 30, no. 1, p. 260.
- 142
Engelsen, C. and Wibetoe, G., Fresenius’ J. Anal. Chem., 2000, vol. 366, no. 5, p. 494.
- 143
Sánchez-Moreno, R.A., Gismera, M.J., Sevilla, M.T., and Procopio, J.R., Phytochem. Anal., 2010, vol. 21, no. 4, p. 340.
- 144
De Gregori, I., Pinochet, H., Fuentes, E., and Potin-Gautier, M., J. Anal. At. Spectrom., 2001, vol. 16, no. 2, p. 172.
- 145
Wang, J. and Hansen, E.H., J. Anal. At. Spectrom., 2002, vol. 17, no. 10, p. 1278.
- 146
Wang, J. and Hansen, E.H., J. Anal. At. Spectrom., 2002, vol. 17, no. 10, p. 1284.
- 147
Semenova, N.V., Leal, L.O., Forteza, R., and Cerda, V., Anal. Chim. Acta, 2002, vol. 486, p. 217.
- 148
Matusiewicz, H. and Kopras, M., J. Anal. At. Spectrom., 2003, vol. 18, no. 12, p. 1415.
- 149
Long, X., Chomchoei, R., Gala, P., and Hansen, E.H., Anal. Chim. Acta, 2004, vol. 523, no. 2, p. 279.
- 150
Jaćimović, R. and Horvat, M., J. Radioanal. Nucl. Chem., 2004, vol. 259, no. 3, p. 385.
- 151
Sun, H.-W. and Suo, R., Anal. Chim. Acta, 2004, vol. 509, no. 1, p. 71.
- 152
Chen, B., Krachler, M., Gonzalez, Z.I., and Shotyk, W., J. Anal. At. Spectrom., 2005, vol. 20, no. 2, p. 95.
- 153
Long, X., Hansen, E.H., and Miro, M., Talanta, 2005, vol. 66, no. 5, p. 1326.
- 154
Yin, J., Jiang, Z., Chang, G., and Hu, B., Anal. Chim. Acta, 2005, vol. 540, no. 2, p. 333.
- 155
Chojnacka, K., Talanta, 2006, vol. 70, no. 5, p. 966.
- 156
Grobecker, K.H. and Detcheva, A., Talanta, 2006, vol. 70, no. 5, p. 962.
- 157
Leal, L.O., Forteza, R., and Cerdà, V., Talanta, 2006, vol. 69, no. 2.
- 158
Wang, Y., Chen, M.-L., and Wang, J.-H., J. Anal. At. Spectrom., 2006, vol. 21, no. 5, p. 535.
- 159
Frentiu, T., Ponta, M., Senila, M., Mihaltan, A.I., Darvasi, E., Frentiu, M., and Cordos, E., J. Anal. At. Spectrom., 2010, vol. 25, no. 5, p. 739.
- 160
Guo, W., Hu, S., Wang, Y., Zhang, L., Hu, Z., and Zhang, J., Microchem. J., 2013, vol. 108, p. 106.
- 161
Tsizin, G.I., Statkus, M.A., and Zolotov, Yu.A., J. Anal. Chem., 2015, vol. 70, no. 11, p. 1289.
- 162
Zhang, J., Li, T., Yang, Y.L., Liu, H.G., and Wang, Y.Z., Biol. Trace Elem. Res., 2015, vol. 164, no. 2, p. 261.
- 163
Lu, X.P., Yang, X.A., Liu, L., Hu, H.H., and Zhang, W.B., Talanta, 2017, vol. 165, p. 258.
- 164
Liu, X., Zhu, Z., Bao, Z., Zheng, H., and Hu, S., Spectrochim. Acta, Part B, 2018, vol. 141, p. 15.
- 165
Smichowski, P. and Londonio, A., Microchem. J., 2018, vol. 136, p. 113.
- 166
Baranovskaya, N.V. and Chernen’kaya, E.V., Fundam. Issled.: Khim. Nauki, 2015, no. 2-2, p. 299.
- 167
Cherevko, A.S. and Syso, A.I., Agrokhimiya, 2010, no. 11, p. 70.
- 168
Yangmei, Z., J. Radioanal. Nucl. Chem., 2001, vol. 249, no. 1, p. 25.
- 169
Rikhvanov, L.P., Arbuzov, S.I., Baranovskaya, N.V., Volostnov, A.V., Arkhangelskaya, T.A., Mezhibor, A.I., Berchuk, V.V., Zhornyak, L.V., Zamyatina, Yu.L., Ivanov, A.Yu., Talovskaya, A.V., Shatilova, S.S., and Yazikov, E.G., Bull. Tomsk Polytech. Univ., 2007, vol. 311, no. 1, p. 126.
- 170
Kučera, J., Byrne, A.R., Mizera, J., and Řanda, Z., J. Radioanal. Nucl. Chem., 2006, vol. 269, no. 2, p. 251.
- 171
Maihara, V.A., Moura, P.L., Catharino, M.G., Castro, L.P., and Figueira, R.C.L., J. Radioanal. Nucl. Chem., 2008, vol. 278, no. 2, p. 395.
- 172
Mizera, J., Randa, Z., and Kučera, J., J. Radioanal. Nucl. Chem., 2008, vol. 278, no. 3, p. 599.
- 173
Greenberg, R.R., Bode, P., and Fernandes, E.A.N., Neutron activation analysis: a primary method of measurement, Spectrochim. Acta, Part B, 2011, vol. 66, nos. 3–4, p. 193.
- 174
Robertus, Yu.V., Rikhvanov, L.P., Sitnikova, V.A., Savenko, K.S., and Bol’shunova, T.S., Izv. Tomsk. Politekh. Univ. Inzh. Georesur., 2018, vol. 329, no. 4, p. 70.
- 175
Scheloske, S. and Schneider, T., Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, vol. 189, nos. 1–4, p. 148.
- 176
Marguí, E., Queralt, I., and Hidalgo, M., TrAC, Trends Anal. Chem., 2009, vol. 28, no. 3, p. 362.
- 177
Nikolova, E.L., Valcheva, R.D., and Angelov, Ch.V., Acta Zool. Bulg., 2018, vol. 11, p. 163.
- 178
Vanhoof, C., Bacon, J.R., Ellis, A.T., Fittschen, U.E.A., and Vincze, L., J. Anal. At. Spectrom., 2019, vol. 34, no. 9, p. 1750.
- 179
Moor, K.L., Chen, Y., van de Meene, A.M.L., Hughes, L., Liu, W., Geraki, T., Mosselmans, F., McGrath, S.P., Grovenor, C., and Zhao, F.-J., New Psychol., 2014, vol. 201, no. 1, p. 104.
- 180
Reimann, C., Fabian, K., Flem, B., Andersson, M., Filzmoser, P., and Englmaier, P., Sci. Total Environ., 2018, vol. 639, p. 129.
- 181
Sapkota, A., Krachler, M., Scholz, C., Cheburkin, A.K., and Shotyk, W., Anal. Chim. Acta, 2005, vol. 540, no. 2, p. 247.
- 182
Michalska-Kacymirow, M., Kurek, E., Smolis, A., Wierzbicka, M., and Bulska, E., Anal. Bioanal. Chem., 2014, vol. 406, no. 15, p. 3717.
- 183
Šerá, L., Loula, M., Matějková, S., and Mestek, O., Chem. Pap., 2019, vol. 73, no. 12, p. 3005.
- 184
Murashkina, I.A., Mirovich, V.M., Gordeeva, V.V., and Chebykin, E.P., Vestn. Voronezh. Gos. Univ., Ser.: Khim. Biol. Farm., 2019, no. 4, p. 53.
- 185
Shotyk, W., Ecol. Indic., 2020, vol. 110, 105960.
- 186
Dombovári, J., Becker, J.S., and Dietze, H.-J., Fresenius’ J. Anal. Chem., 2000, vol. 367, no. 5, p. 407.
- 187
Mattusch, J., Wennrich, R., Schmidt, A.C., and Reisser, W., Fresenius’ J. Anal. Chem., 2000, vol. 366, no. 2, p. 200.
- 188
Ivanova, J., Korhammer, S., Djingova, R., Heidenreich, H., and Markert, B., Spectrochim. Acta, Part B, 2001, vol. 56, no. 1, p. 3.
- 189
Larivière, D., Epov, V.N., Evans, R.D., and Cornett, R.J., J. Anal. At. Spectrom., 2003, vol. 18, p. 338.
- 190
Bulska, E., Danko, B., Dybczyński, R.S., Krata, A., Kulisa, K., Samczyński, Z., and Wojciechowski, M., Talanta, 2012, vol. 97, p. 303.
- 191
Carvalho Ramos, J. and Borges, D.L.G., J. Anal. At. Spectrom., 2014, vol. 29, no. 2, p. 304.
- 192
Roux, P., Lemarchand, D., Hughes, H.J., and Turpault, M.P., Geostand. Geoanal. Res., 2015, vol. 39, no. 4, p. 453.
- 193
Ni, Z., Ren, C., Cheng, J., and Tang, F., J. Braz. Chem. Soc., 2017, vol. 28, p. 1960.
- 194
Begu, E., Snell, B., and Arslan, Z., Microchem. J., 2019, vol. 145, p. 412.
- 195
Balcaen, L., Bolea-Fernandez, E., Resano, M., and Vanhaecke, F., Anal. Chim. Acta, 2015, vol. 894, no. 24, p. 7.
- 196
Persson, D.P., Chen, A., Aarts, M.G.M., Salt, D.E., Schjoerring, J.K., and Husted, S., Plant Physiol., 2016, vol. 172, no. 2, p. 835.
- 197
Pohl, P., Bielawska-Pohl, A., Dzimitrowicz, A., Greda, K., Jamroz, P., Lesniewicz, A., Szymczycha-Madeja, A., and Welna, M., J. Pharm. Biomed. Anal., 2018, vol. 159.
- 198
Martin, M.Z., Labbe, N., Andre, N., Harris, R., Ebinger, M., Wullschleger, S.D., and Vass, A.A., Spectrochim. Acta, Part B, 2007, vol. 62, no. 12, p. 1426.
- 199
Braga, J.W.B., Trevizan, L.C., Nunes, L.C., Rufini, I.A., Santos, D., and Krug, F.J., Spectrochim. Acta, Part B, 2010, vol. 65, no. 1, p. 66.
- 200
Kaiser, J., Novotny, K., Martin, M.Z., Hrdlicka, A., Malina, R., Hartl, M., Adam, V., and Kizek, R., Surf. Sci. Rep., 2012, vol. 67, nos. 11–12, p. 233.
- 201
Santos, D., Nunes, L.C., Gustinelli Arantes de Carvalho, G., da Silva Gomes, M., de Souza, P.F., de Oliveira Leme, F., Cofani dos Santos, L., and Krug, F.J., Spectrochim. Acta, Part B, 2012, vols. 71–72, p. 3.
- 202
Markiewicz-Keszycka, M., Cama-Moncunill, X., Casado-Gavalda, M.P., and Dixit, Y., Trends Food Sci. Technol., 2017, vol. 65, p. 80.
- 203
Senesi, G.S., Cabral, J., Menegatti, C.R., Marangoni, B., and Nicolodelli, G., TrAC, Trends Anal. Chem., 2019, vol. 118, p. 453.
- 204
Cherevko, A.S. and Syso, A.I., J. Anal. Chem., 2009, vol. 64, no. 8, p. 806.
- 205
Otmakhov, V.I., Rabtsevich, E.S., Petrova, E.V., Shilova, I.V., Sheleg, E.S., and Babenkov, D.E., Zavod. Lab., Diagn. Mater., 2019, vol. 85, no. 1, part 2, p. 60.
- 206
Zaksas, N.P., Sultangazieva, T.T., and Korda, T.M., J. Anal. Chem., 2006, vol. 61, no. 6, p. 582.
- 207
Perekotii, V.V., Kaunova, A.A., Petrov, V.I., Tsyupko, T.G., and Temerdashev, Z.A., Izv. Vyssh. Uchebn. Zaved., Pishch. Tekhnol., 2012, nos. 5–6(329–330), p. 101.
- 208
Masson, P., Prunet, T., and Orignac, D., Microchim. Acta, 2006, vol. 154, no. 3, p. 229.
- 209
Lee, Y.N. and Choi, H.-S., J. Anal. Chem., 2007, vol. 62, no. 9, p. 845.
- 210
Chajduk, E. and Dybczyński, R.S., Microchim. Acta, 2010, vol. 168, nos. 1–2, p. 37.
- 211
Arnold, T., Schönbächler, M., Rehkämper, M., Dong, S., Zhao, F.-J., Kirk, G.J.D., Coles, B.J., and Weiss, D.J., Anal. Bioanal. Chem., 2010, vol. 398, no. 7, p. 3115.
- 212
Singh, S., Oswal, M., Behera, B.R., Kumar, A., Santra, S., Acharya, R., and Singh, K.P., J. Radioanal. Nucl. Chem., 2020, vol. 323, no. 3, p. 1443.
- 213
Maher, W.A., Eggins, S., Krikowa, F., Jagtap, R., and Foster, S., J. Anal. At. Spectrom., 2017, vol. 32, no. 6, p. 1129.
- 214
Trevizan, L.C., Santos, D., Jr., Samad, R.E., Dias Vieira, N., Jr., Nunes, L.C., Rufini, I.A., and Krug, F.J., Spectrochim. Acta, Part B, 2009, vol. 64, no. 5, p. 369.
- 215
Weiss, D.J., Rausch, N., Mason, T.F.D., Coles, B.J., Wilkinson, J.J., Ukonmaanaho, L., Arnold, T., and Nieminen, T.M., Geochim. Cosmochim. Acta, 2007, vol. 71, no. 14, p. 3498.
- 216
Navarrete, J.M., Longoria, L.C., Martínez, M.T., and Cabrera, L., J. Radioanal. Nucl. Chem., 2007, vol. 271, no. 3, p. 599.
- 217
Owolabi, I.A., Mandiwana, K.L., and Panichev, N., S. Afr. J. Chem., 2016, vol. 69, p. 67.
- 218
Shi, C., Gu, T., Bu, W., Yan, W., Liu, M., and Yan, M., Geostand. Geoanal. Res., 2008, vol. 32, no. 3, p. 337.
- 219
Katz, S.A., J. Radioanal. Nucl. Chem., 2002, vol. 251, no. 1, p. 3.
- 220
Lindstrom, R.M., Byrne, A.R., Becker, D.A., Smodiš, B., and Garrity, K.M., Fresenius’ J. Anal. Chem., 1990, vol. 338, no. 4, p. 569.
- 221
Rimmer, C.A., Howerton, S.B., Sharpless, K.E., Sander, L.C., Long, S.E., Murphy, K.E., Porter, B.J., Putzbach, K., Rearick, M.S., Wise, S.A., Wood, L.J., Zeisler, R., Hancock, D.K., Yen, J.H., Betz, J.M., Nguyenpho, A., Yang, L., Scriver, C., Willie, S., Sturgeon, R., Schaneberg, B., Nelson, C., Skamarack, J., Pan, M., Levanseler, K., Gray, D., Waysek, E.H., Blatter, A., and Reich, E., Anal. Bioanal. Chem., 2007, vol. 389, no. 1, p. 179.
- 222
Steger, H.F., Geostand. Newsl., 1981, vol. 5, no. 2, p. 189.
- 223
Ihnat, M., Anal. Bioanal. Chem., 2001, vol. 370, nos. 2–3, p. 279.
- 224
Kramer, G.N., Muntau, H., Maier, E., and Pauwels, J., Fresenius’ J. Anal. Chem., 1998, vol. 360, nos. 3–4, p. 299.
- 225
Quevauviller, P., TrAC, Trends Anal. Chem., 1999, vol. 18, no. 5, p. 302.
- 226
Griepink, B., Muntau, H., and Colinet, E., Fresenius’ J. Anal. Chem., 1983, vol. 315, no. 3, p. 193.
- 227
Maier, E.A., Muntau, H., and Griepink, B., Fresenius’ J. Anal. Chem., 1989, vol. 335, no. 7, p. 833.
- 228
Maier, E.A., Griepink, B., Quevauviller, P., De Angelis, L., and Muntau, H., Microchim. Acta, 1990, vol. 102, nos. 1–3, p. 87.
- 229
Quevauviller, P., Vercoutere, K., and Griepink, B., Anal. Chim. Acta, 1992, vol. 259, no. 2, p. 281.
- 230
Quevauviller, P., Herzig, R., and Muntau, H., Sci. Total Environ., 1996, vol. 187, no. 2, p. 143.
- 231
Herzig, R., Rehnert, A., Korhammer, S., Kumpulainen, J., Schramel, P., Muntau, H., Linsinger, T., and Quevauviller, P., TrAC, Trends Anal. Chem., 2002, vol. 21, no. 11, p. 746.
- 232
Linsinger, T.P.J., Roebben, G., Solans, C., and Ramsch, R., TrAC, Trends Anal. Chem., 2011, vol. 30, no. 1, p. 18.
- 233
Ghidan, O.Y. and Loss, R.D., Geostand. Geoanal. Res., 2010, vol. 34, no. 2, p. 185.
- 234
Parr, R.M., Schelenz, R., and Ballestra, S., Fresenius’ Z. Anal. Chem., 1988, vol. 332, no. 6, p. 518.
- 235
Parr, R.M., Fajgelj, A., Dekner, R., Vera Ruiz, H., Carvalho, F.P., and Povinec, P.P., Fresenius’ J. Anal. Chem., 1998, vol. 360, nos. 3–4, p. 287.
- 236
Arunachalam, J., Bleise, A., Mahwar, R.S., Ramadevi, P., and Iyengar, G.V., J. Food Compos. Anal., 2006, vol. 19, nos. 2–3, p. 241.
- 237
Ihnat, M., Fresenius’ Z. Anal. Chem., 1988, vol. 332, no. 6, p. 568.
- 238
Kramer, G.N., Pauwels, J., and Belliardo, J.J., Preparation of biological and environmental reference materials at cbnm, Fresenius’ J. Anal. Chem., 1993, vol. 345, nos. 2–4, p. 133.
- 239
Ihnat, M., Dabeka, R.W., and Wolynetz, M.S., Fresenius’ J. Anal. Chem., 1993, vol. 345, nos. 2–4, p. 221.
- 240
Lamberty, A., Schimmel, H., and Pauwels, J., Fresenius’ J. Anal. Chem., 1998, vol. 360, nos. 3–4, p. 359.
- 241
Linsinger, T.P.J., Bernreuther, A., Corbisier, P., Dabrio, M., Emteborg, H., Held, A., Lamberty, A., Lapitajs, G., Ricci, M., Roebben, G., Trapmann, S., Ulberth, F., and Emons, H., Accredit. Qual. Assur., 2007, vol. 12, nos. 3–4, p. 167.
- 242
Ulberth, F., Anal. Bioanal. Chem., 2006, vol. 386, no. 4, p. 1121.
- 243
Van Dijk, D., Commun. Soil Sci. Plant Anal., 2002, vol. 33, nos. 15–18, p. 2457.
- 244
Houba, V.J.G., Novozamsky, I., and van der Lee, J.J., Sci. Total Environ., 1995, vol. 176, nos. 1–3, p. 73.
- 245
Van Dijk, D. and Houba, V.J.G., Commun. Soil Sci. Plant Anal., 2000, vol. 31, nos. 11–14, p. 1745.
- 246
Novozamsky, I., Houba, V.J.G., and Daniel, R.C., Fresenius’ J. Anal. Chem., 1993, vol. 345, nos. 2–4, p. 198.
- 247
Houba, V.J.G., Uittenbogaard, J., and Pellen, P., Commun. Soil Sci. Plant Anal., 1996, vol. 27, nos. 3–4, p. 421.
- 248
Armishaw, P. and Millar, R., Anal. Bioanal. Chem., 2001, vol. 370, nos. 2–3, p. 291.
- 249
Polkowska-Motrenko, H. and Dybczyński, R., J. Radioanal. Nucl. Chem., 2006.
- 250
Holynska, B., Jasion, J., Lankosz, M., and Ostrowski, A., Fresenius’ Z. Anal. Chem., 1987, vol. 328, no. 7, p. 588.
- 251
Dybczyński, R., Danko, B., and Polkowska-Motrenko, H., Anal. Bioanal. Chem., 2001, vol. 370, nos. 2–3, p. 126.
- 252
Samczyński, Z., Dybczyński, R.S., Polkowska-Motrenko, H., Chajduk, E., Pyszynska, M., Danko, B., Czerska, E., Kulisa, K., Doner, K., and Kalbarczyk, sP., Sci. World J., 2012, vol. 2012, 216380.
- 253
Dybczyński, R., Danko, B., Kulisa, K., Chajduk-Maleszewska, E., Polkowska-Motrenko, H., Samczyński, Z., and Szopa, Z., J. Radioanal. Nucl. Chem., 2004, vol. 259, no. 3, p. 409.
- 254
Makarevich, V.I. and Plesnetsova, O.A., Stand. Obraztsy, 2008, no. 1, p. 45.
- 255
Shafrinskii, Yu.S., Zh. Anal. Khim., 1977, vol. 32, no. 7, p. 1429.
- 256
Lontsikh, S.V. and Petrov, L.L., Standartnye obraztsy sostava prirodnykh sred (Reference Materials for the Composition of Natural Media), Novosibirsk: Nauka, 1988.
- 257
Catalogue of the Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences. http://www.igc.irk.ru/ru/component/flexicontent/item/3412-standartnye-obraztsy-sostava?Itemid=746. Accessed June 2, 2020.
- 258
Vasil’eva, I.E., Shabanova, E.V., Susloparova, V.E., and Manokhina, S.N., Stand. Obraztsy, 2014, no. 3, p. 24.
- 259
Mahwar, R.S., Verma, N.K., Chakrabarti, S.P., and Biswas, D.K., Fresenius’ J. Anal. Chem., 1998, vol. 360, nos. 3–4, p. 291.
- 260
Alam, Z., Kaur, S., and Porwal, P.K., Accredit. Qual. Assur., 2018, vol. 23, no. 6, p. 319.
- 261
Bahl, J.R., Bansal, R.P., Goel, R., and Kumar, S., Indian J. Nat. Prod. Resour., 2015, vol. 6, no. 2, p. 127.
- 262
Yan, M. and Cheng, Z., Geostand. Geoanal. Res., 2007, vol. 31, no. 4, p. 301.
- 263
Okamoto, K., Fresenius’ Z. Anal. Chem., 1988, vol. 332, no. 6, p. 524.
- 264
Okamoto, K., Mar. Environ. Res., 1988, vol. 26, no. 3, p. 199.
- 265
Okamoto, K., Yoshinaga, J., and Morita, M., Microchim. Acta, 1996, vol. 123, nos. 1–4, p. 15.
- 266
Certified Reference Materials Catalogue of Korea, Research Institute of Standards and Science. www.kriss.re.kr/eng/file/20141215crm.pdf. Accessed July 2, 2020.
- 267
Tagliaferro, F.S., De Nadai, FernandesE.A., and Bacchi, M.A., J. Radioanal. Nucl. Chem., 2006, vol. 269, no. 2, p. 371.
- 268
Martínez, M.I.V., Zeisler, R., De Nadai Fernandes, E.A., and Bacchi, M.A., Accredit. Qual. Assur., 2018, vol. 23, no. 6, p. 329.
- 269
Steiger, Th. and Pradel, R., Accredit. Qual. Assur., 2007, vol. 12, no. 5, p. 265.
- 270
Eggen, O.A., Reimann, C., and Flem, B., Sci. Total Environ., 2019, vol. 670, p. 138.
Funding
The work was performed within the State Assignment for the Project IX.127.1.4 no. 0350-2019-0005.
Author information
Affiliations
Corresponding author
Additional information
Translated by E. Rykova
Rights and permissions
About this article
Cite this article
Vasil’eva, I.E., Shabanova, E.V. Plant-Matrix Certified Reference Materials as a Tool for Ensuring the Uniformity of Chemical Measurements. J Anal Chem 76, 137–155 (2021). https://doi.org/10.1134/S1061934821020143
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords:
- certified reference materials
- plant materials
- elemental composition
- methods of chemical analysis
- ensuring uniformity of measurements