Multi-Walled Carbon Nanotubes Magnetic Composite as an Adsorbent for Preconcentration and Determination of Trace Level Vanadium in Water Samples

Abstract

Magnetic solid phase microextraction (m-SPME) is a well-defined strategy for the preconcentration and separation of hydrophobic species from aqueous samples without the use of toxic organic solvents. This work identifies a new analytical procedure for trace level vanadium(V) by inductively coupled plasma mass spectrometry coupled to magnetic solid phase microextraction. The procedure is based on the preconcentration of the V(V)–H2O2–4-(2-pyridylazo)resorcinol complex. Magnetic Fe3O4 nanoparticles decorated multi-walled carbon nanotubes as an adsorbent were investigated systematically. The calibration curve obtained by using m-SPME for vanadium(V) was linear from 0.011 to 10 µg/L. The method detection limit was found to be 1.5 ng/L. The m-SPME method was applied to the assay of vanadium in a certified reference water sample and the result was in total balance with the declared value. Finally, the proposed method was applied to the determination of vanadium in real water samples.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Nriagu, J.O., Vanadium in the Environment, New York: Wiley, 1998.

    Google Scholar 

  2. 2

    Cornelis, R., Caruso, J., Crews, H., and Heumann, K., in Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine and Occupational Health, Chichester, UK: Wiley, 2005.

    Google Scholar 

  3. 3

    Thompson, K.H., McNeill, J.H., and Orvig, C., Chem. Rev., 1999, vol. 99, no. 9, p. 2561.

    CAS  Article  Google Scholar 

  4. 4

    Chen, Z.L. and Owens, G., Anal. Chim. Acta, 2008, vol. 607, no. 1, p. 1.

    CAS  Article  Google Scholar 

  5. 5

    Pawliszyn, J., in Handbook of Solid Phase Microextraction, Pawliszyn, J., Ed., Beijing: Chemical Industry, 2009, p. 14.

    Google Scholar 

  6. 6

    Berton, P., Martinis, E.M., Martinez, L.D., and Wuilloud, R.G., Anal. Chim. Acta, 2009, vol. 640, nos. 1–2, p. 40.

    CAS  Article  Google Scholar 

  7. 7

    Naeemullah, Gul Kazi, T., and Tuzen, M., Food Chem., 2015, vol. 172, p. 161.

    CAS  Article  Google Scholar 

  8. 8

    Santos, A.P. and Lemos, V.A., Water, Air, Soil Pollut., 2015, vol. 226, no. 3, p. 60.

    Article  Google Scholar 

  9. 9

    de Jesus, A.M.D., Aguirre, M.A., Hidalgo, M., Canals, A., and Pereira-Filho, E.R., J. Anal. At. Spectrom., 2014, vol. 29, p. 1813.

    CAS  Article  Google Scholar 

  10. 10

    Verma, D. and Deb, M.K., Int. J. Environ. Anal. Chem., 2012, vol. 92, no. 1, p. 59.

    CAS  Article  Google Scholar 

  11. 11

    Li, L. and Hu, B., Talanta, 2007, vol. 72, p. 472.

    CAS  Article  Google Scholar 

  12. 12

    Wuilloud, G.M., de Wuilloud, J.C.A., Wuilloud, R.G., Silva, M.F., Olsina, R.A., and Martinez, L.D., Talanta, 2002, vol. 58, no. 4, p. 619.

    CAS  Article  Google Scholar 

  13. 13

    Zhu, X., Zhu, Z., and Wu, S., Microchim. Acta, 2008, vol. 161, no. 1, p. 143.

    CAS  Article  Google Scholar 

  14. 14

    Filik, H., Yanaz, Z., and Apak, R., Anal. Chim. Acta, 2008, vol. 620, nos. 1–2, p. 27.

    CAS  Article  Google Scholar 

  15. 15

    Naeemullah, Tuzen, M., Gul Kazi, T., Citak, D., and Soylak, M., J. Anal. At. Spectrom., 2013, vol. 28, p. 1441.

    CAS  Article  Google Scholar 

  16. 16

    Pekiner, O.Z. and Tuzen, M., J. Ind. Eng. Chem., 2014, vol. 20, no. 4, p. 1825.

    CAS  Article  Google Scholar 

  17. 17

    Huang, C. and Hu, B., Analyst, 2011, vol. 136, nos. 3–4, p. 1425.

    CAS  Article  Google Scholar 

  18. 18

    Wu, Y., Hu, B., Hu, W., Jiang, Z., and Li, B., J. Mass Spectrom., 2007, vol. 42, no. 1, p. 467.

    CAS  Article  Google Scholar 

  19. 19

    Asadollahi, T., Dadfarni, S., and Shabani, A.M.H., Talanta, 2010, vol. 82, no. 1, p. 208.

    CAS  Article  Google Scholar 

  20. 20

    Herrero-Latorre, C., Barciela-García, J., García-Martín, S., Peña-Crecente, R.M., and Otárola-Jiménez, J., Anal. Chim. Acta, 2015, vol. 892, p. 10.

    CAS  Article  Google Scholar 

  21. 21

    Souza Silva, E.A., Risticevic, S., and Pawliszyn, J., TrAC, Trends Anal. Chem., 2013, vol. 43, p. 24.

    CAS  Article  Google Scholar 

  22. 22

    González-Curbelo, M.A., Herrera-Herrera, A.V., Hernández-Borges, J., and Rodríguez-Delgado, M.A., J. Sep. Sci., 2013, vol. 36, no. 3, p. 556.

    Article  Google Scholar 

  23. 23

    Giakisikli, G. and Anthemidis, A.N., Anal. Chim. Acta, 2013, vol. 789, p. 1.

    CAS  Article  Google Scholar 

  24. 24

    Yi, L.X., Fang, R., and Chen, G.H., J. Chromatogr. Sci., 2013, vol. 51, no. 7, p. 608.

    CAS  Article  Google Scholar 

  25. 25

    Baggiani, C., Anfossi, L., and Giovannoli, C., Anal. Chim. Acta, 2007, vol. 591, no. 1, p. 29.

    CAS  Article  Google Scholar 

  26. 26

    Capriotti, A.L., Cavaliere, C., Giansanti, P., Gubbiotti, R., Samperi, R., and Lagana, A., J. Chromatogr. A, 2010, vol. 1217, no. 16, p. 2521.

    CAS  Article  Google Scholar 

  27. 27

    Hasanzadeh, M., Shadjou, N., and de la Guardia, M., TrAC, Trends Anal. Chem., 2015, vol. 72, p. 1.

    CAS  Article  Google Scholar 

  28. 28

    de Dios, A.S. and Díaz-García, M.E., Anal. Chim. Acta, 2010, vol. 666, nos. 1–2, p. 1.

    CAS  Article  Google Scholar 

  29. 29

    Wan, J., Cai, W., Feng, J., Meng, X., and Liu, E., J. Mater. Chem., 2007, vol. 17, no. 12, p. 1188.

    CAS  Article  Google Scholar 

  30. 30

    Jiang, L. and Gao, L., Chem. Mater., 2003, vol. 15, no. 14, p. 2848.

    CAS  Article  Google Scholar 

  31. 31

    Lu, A.H., Schmidt, W., Matoussevitch, N., Bönnemann, H., Spliethoff, B., Tesche, B., Bill, E., Kiefer, W., and Schüth, F., Angew. Chem., Int. Ed. E-ngl., 2004, vol. 43, no. 33, p. 4303.

    CAS  Article  Google Scholar 

  32. 32

    Correa-Duarte, M.A., Grzelczak, M., Salgueiriño-Maceira, V., Giersig, M., Liz-Marzán, L.M., Farle, M., Sierazdki, K., and Diaz, R., J. Phys. Chem. B, 2005, vol. 109, no. 41, p. 19060.

    CAS  Article  Google Scholar 

  33. 33

    Moliner-Martínez, Y., Prima-Garcia, H., Ribera, A., Coronado, E., and Campíns-Falcó, P.M., Anal. Chem., 2012, vol. 84, no. 16, p. 7233.

    Article  Google Scholar 

  34. 34

    Huang, D., Deng, C., and Zhang, X., Anal. Methods, 2014, vol. 6, p. 7130.

    CAS  Article  Google Scholar 

  35. 35

    Fan, X.J. and Li, X., New Carbon Mater., 2012, vol. 27, no. 2, p. 111.

    CAS  Article  Google Scholar 

  36. 36

    Sowichai, K., Supothina, S., Nimittrakoolchai, O., Seto, T., Otani, Y., and Charinpanitkul, T., J. Ind. Eng. Chem., 2012, vol. 18, no. 5, p. 1568.

    CAS  Article  Google Scholar 

  37. 37

    Chen, W., Pan, X., and Bao, X., J. Am. Chem. Soc., 2007, vol. 129, no. 23, p. 7421.

    CAS  Article  Google Scholar 

  38. 38

    Butler, A., Clague, M.J., and Meister, G.E., Chem. Rev., 1994, vol. 94, no. 3, p. 625.

    CAS  Article  Google Scholar 

Download references

Funding

We gratefully acknowledge Istanbul University-Cerrahpaşa Scientific Research Fund for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hayati Filik.

Ethics declarations

Asiye Aslıhan Avan declares that she has no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayati Filik, Asiye Aslıhan Avan Multi-Walled Carbon Nanotubes Magnetic Composite as an Adsorbent for Preconcentration and Determination of Trace Level Vanadium in Water Samples. J Anal Chem 76, 156–164 (2021). https://doi.org/10.1134/S106193482102009X

Download citation

Keywords:

  • vanadium
  • magnetic solid phase extraction
  • inductively-coupled plasma mass spectrometry
  • determination
  • carbon nanotube
  • water analysis