Solid Phase Spectrophotometric Determination of Cationic Surfactants Using Silica-Titania Xerogel–Pyrocatechol Violet Dye System


The influence of cetylpyridinium chloride (CPC) on the interaction of triphenylmethane dyes (pyrocatechol violet, eriochrome cyanine R, and chrome azurol S) with silica-titania xerogels has been studied. For all the studied triphenylmethane dyes (TPMD) the formation of colored complexes of CPC and TPMD with titanium(IV) embedded in silica-titania xerogels has been observed using solid phase spectrophotometry. Maximal absorbance increase has been observed for pyrocatechol violet (PV) complexes. The procedure for CPC determination has been proposed using silica-titania xerogel – PV system (analytical range 0.01–0.56 mM, limit of detection 3.6 μM). The recovery test of the proposed solid phase spectrophotometric CPC determination procedure has been used for the procedure validation. The procedure has been applied for the determination of CPC in treated waste water, and cationic surfactants in terms of CPC in working solutions of disinfectants Alaminol and Catamine AB.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    Madunić-Čačić, D., Sak-Bosnar, M., Galović, O., Sakač, N., and Matešić-Puač, R., Talanta, 2008, vol. 76, p. 259.

    Article  Google Scholar 

  2. 2

    Samardžić, M., Sak-Bosnar, M., and Madunić-Čačić, D., Talanta, 2011, vol. 83, p. 789.

    Article  Google Scholar 

  3. 3

    Mostafa, G.A.E., J. Pharm. Biomed. Anal., 2006, vol. 41, p. 1110.

    CAS  Article  Google Scholar 

  4. 4

    Hajduković, M., Samardžić, M., Galović, O., Széchenyi, A., and Sak-Bonsar, M., Sens. Actuators, B, 2017, vol. 251, p. 795.

    Article  Google Scholar 

  5. 5

    Vershinin, V.I., Opredelenie summarnogo soderzhaniya odnotipnykh organicheskikh veshchestv (teoriya integral’nykh pokazatelei) (Determination of the Total Concentration of Organic Substances of the Same Type: Theory of Integral Indicators), Omsk: Omsk. Gos. Univ., 2016.

  6. 6

    Peng, X.T., Shi, Z.G., and Feng, Y.Q., J. Chromatogr. A, 2011, vol. 1218, p. 3588.

    CAS  Article  Google Scholar 

  7. 7

    Heinig, K., Vogt, C., and Werner, G., J. Chromatogr. A, 1997, vol. 781, p. 17.

    CAS  Article  Google Scholar 

  8. 8

    Herrero-Martínez, J.M., Simó-Alfonso, E.F., Mongay-Fernández, C., and Ramis-Ramos, G., J. Chromatogr. A, 2000, vol. 895, p. 227.

    Article  Google Scholar 

  9. 9

    Benamor, M., Aguersif, N., and Draa, M.T., J. Pharm. Biomed. Anal., 2001, vol. 26, p. 151.

    CAS  Article  Google Scholar 

  10. 10

    Afkhami, A., Nematollahi, D., Madrakian, N., Abbasi-Tarighat, M., and Hajihadi, M., J. Hazard. Mater., 2009, vol. 166, p. 770.

    CAS  Article  Google Scholar 

  11. 11

    Passos, M.L., Saraiva, M.L., and Lima, J.L., Anal. Sci., 2005, vol. 21, p. 1509.

    CAS  Article  Google Scholar 

  12. 12

    Němcová, I., Tománková, V., and Rychlovský, P., Talanta, 2000, vol. 52, p. 111.

    Article  Google Scholar 

  13. 13

    Patel, R. and Patel, K.S., Talanta, 1999, vol. 48, p. 923.

    CAS  Article  Google Scholar 

  14. 14

    Sakai, T., Ohno, N., Kamoto, T., and Hideto, S., Microchim. Acta, 1992, vol. 106, p. 45.

    CAS  Article  Google Scholar 

  15. 15

    Dmitrienko, S.G., Pyatkova, L.N., Vakhaeva, L.P., Runov, V.K., and Zolotov, Yu.A., J. Anal. Chem., 1996, vol. 51, p. 453.

    CAS  Google Scholar 

  16. 16

    Savvin, S.B., Chernova, R.K., Belousova, V.V., Sukhova, L.K., and Shtykov, S.N., Zh. Anal. Khim., 1978, vol. 33, p. 1473.

    CAS  Google Scholar 

  17. 17

    Tikhonov, V.N. and Aleksandrova, N.P., Zh. Anal. Khim., 1981, vol. 36, no. 2, p. 242.

    CAS  Google Scholar 

  18. 18

    Marczenko, Z. and Kałowska, H., Microchem. J., 1982, vol. 27, p. 174.

    CAS  Article  Google Scholar 

  19. 19

    Sicilia, D., Rubio, S., and Pérez-Bendito, D., Anal. Chim. Acta, 1994, vol. 297, p. 453.

    CAS  Article  Google Scholar 

  20. 20

    Morosanova, E.I., Belyakov, M.V., and Zolotov, Yu.A., J. Anal. Chem., 2012, vol. 67, no. 1, p. 14.

    CAS  Article  Google Scholar 

  21. 21

    Morosanova, E.I., Belyakov, M.V., and Zolotov, Yu.A., J. Anal. Chem., 2012, vol. 67, no. 2, p. 151.

    CAS  Article  Google Scholar 

  22. 22

    Morosanova, M.A., Morosanova, E.I., Anisimov, D.I., and Zolotov, Y.A., Curr. Anal. Chem., 2015, vol. 11, p. 291.

    CAS  Article  Google Scholar 

  23. 23

    Morosanova, M.A., Samodelov, Z.V., and Morosanova, E.I., Analitika Kontrol’, 2015, vol. 19, no. 4, p. 357.

    Google Scholar 

  24. 24

    Morosanova, M.A. and Morosanova, E.I., Chem. Cent. J., 2015, vol. 9, p. 64.

    Article  Google Scholar 

  25. 25

    Morosanova, M.A. and Morosanova, E.I., Anal. Methods, 2016, vol. 8, p. 8092.

    CAS  Article  Google Scholar 

  26. 26

    Morosanova, M.A., Samodelov, Z.V., and Morosanova, E.I., Sensors, 2018, vol. 18, p. 864.

    Article  Google Scholar 

  27. 27

    Morosanova, E.I., J. Anal. Chem., 2018, vol. 73, no. 11, p. 1043.

    CAS  Article  Google Scholar 

  28. 28

    Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1989.

  29. 29

    Ivanov, V.M. and Kochelaeva, G.A., Russ. Chem. Rev., 2006, vol. 75, no. 3, p. 283.

    Article  Google Scholar 

  30. 30

    Neudachina, L.K. and Petrova, Yu.S., Primenenie poverkhnostno-aktivnykh veshchestv v analize (Use of Surfactants in Analysis), Yekaterinburg: Ural. Gos. Univ., 2017.

  31. 31

    Morosanova, E.I., Velikorodnyi, A.A., Zolotov, Yu.A., and Skornyakov, V.I., J. Anal. Chem., 2000, vol. 55, no. 12, p. 1136.

    CAS  Article  Google Scholar 

Download references


Authors would like to thank MSU students Z.V. Samodelov and S.E. Dronov for the participation in the experiments.


The study was funded by MedEcoTest Ltd. (Grant no. 407/14).

Author information



Corresponding author

Correspondence to E. I. Morosanova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morosanova, M.A., Morosanova, E.I. Solid Phase Spectrophotometric Determination of Cationic Surfactants Using Silica-Titania Xerogel–Pyrocatechol Violet Dye System. J Anal Chem 76, 73–79 (2021).

Download citation


  • silica-titania sol-gel materials
  • cationic surfactants determination
  • solid phase spectrophotometry
  • waste waters
  • disinfectants