Skip to main content
Log in

Magnetic Nanoparticle Based Immunofluorescence Assay for the Determination of Aflatoxin B1

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A rapid and sensitive immunofluorescence assay for aflatoxin B1 (AFB1) determination was developed using magnetic nanoparticles (MNPs). MNPs were prepared by thermal co-precipitation of Fe2+ and Fe3+ in aqueous solution. MNPs were functionalized with (3-aminopropyl)triethoxysilane. An optimum amount of polyclonal anti-AFB1 antibody was immobilized on MNPs (40 μg/mg MNPs). Fluorescein isothiocyanate (FITC) conjugate of AFB1 was prepared. A competitive immunoassay of AFB1 was performed. AFB1 in the sample and AFB1-FITC fluorescent conjugate competed for binding to the immobilized antibody on MNPs. The magnetic nanoparticles were removed using a permanent magnet. Fluorescence intensity of the unbound conjugate AFB1-FITC in the supernatant was measured. The excess of the conjugate is directly proportional to the concentration of AFB1 in the sample. The developed method is very rapid (30 min) and sensitive with the limit detection for AFB1 of 0.9 pg/mL and linear range of 1–100 pg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Tang, D., Yu, Y., Niessner, R., Miro, M., and Knopp, D., Analyst, 2010, vol. 135, p. 2661.

    Article  CAS  PubMed  Google Scholar 

  2. Meena, N.S., Sahni, Y.P., Thakur, D., and Singh, R.P., J. Entomol. Zool. Stud., 2018, vol. 6, no. 2, p. 167.

    Google Scholar 

  3. Impact of Nanoscience in the Food Industry, Grumezescu, A. and Holban, A., Eds., London: Elsevier, 2018, vol. 12.

    Google Scholar 

  4. Jasrotia, P., Kashyap, P.L., Bhardwaj, A.K., Kumar, S., and Singh, G.P., Wheat Barley Res., 2018, vol. 10, no. 1, p. 137.

    Google Scholar 

  5. Handbook of Nanomaterials in Analytical Chemistry, Hussain, C.M., Ed., London: Elsevier, 2019.

    Google Scholar 

  6. Hill, H. and Mirkin, C., Nat. Protoc., 2006, vol. 1, p. 324.

    Article  CAS  PubMed  Google Scholar 

  7. Lu, A., Salabas, E., and Schuth, F., Angew. Chem., Int. Ed., 2007, vol. 46, p. 1222.

    Article  CAS  Google Scholar 

  8. Corchero, J. and Villaverde, A., Trends Biotechnol., 2009, vol. 27, p. 468.

    Article  CAS  PubMed  Google Scholar 

  9. Kuramitz, H., Anal. Bioanal. Chem., 2009, vol. 394, p. 61.

    Article  CAS  PubMed  Google Scholar 

  10. Schubayev, V., Pisanic, T., and Jin, S., Adv. Drug Delivery Rev., 2009, vol. 61, p. 467.

    Article  CAS  Google Scholar 

  11. Xie, J., Huang, J., Li, X., Sun, X., and Chen, X., Curr. Med. Chem., 2009, vol. 16, p. 1278.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson, A.K., Zawadzka, A.M., Deobald, L.A., Crawford, R.L., and Paszczynski, A.J., J. Nanopart. Res., 2008, vol. 10, p. 1009.

    Article  CAS  Google Scholar 

  13. Pundir, C.S. and Narwal, V., Biosens. Bioelectron., 2018, vol. 100, p. 214.

    Article  CAS  PubMed  Google Scholar 

  14. Sweeny, M.J. and Dobson, A.D.W., Int. J. Food Microbiol., 1998, vol. 43, no. 3, p. 141.

    Article  Google Scholar 

  15. Sarnoski, P.J., Billingsley, V.E., Johnson, J.V., and O’Keefe, S.F., J. Food Health Sci., 2015, vol. 1, no. 2, p. 75.

    Google Scholar 

  16. Henry, S.H., Whitaker, T., Rabbani, I., Bowers, J., Park, D., Price, W., Bosch, F.X., Pennington, J., Verger, P., Yoshizawa, T., van Egmond, H., Jonker, M.A., and Coker, R., AFLATOXIN M1, Report 1012, Joint Expert Committee on Food Additives Monographs, 2001. http://www.inchem.org/documents/jecfa/jecmono/v47je02.htm. Accessed July 21, 2020.

  17. Williams, J.H., Phillips, T.D., Jolly, P.E., Stiles, J.K., Jolly, C.M., and Aggarwal, D., Am. J. Clin. Nutr., 2004, vol. 80, no. 5, p. 1106.

    Article  CAS  PubMed  Google Scholar 

  18. Kanungo, L. and Bhand, S., J. Anal. Methods Chem., 2013, vol. 2013, 584964. https://doi.org/10.1155/2013/584964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hussein, H.S. and Brasel, J.M., Toxicology, 2001, vol. 167, no. 2, p. 101.

    Article  CAS  PubMed  Google Scholar 

  20. Tan, Y., Chu, X., Shen, G., and Yu, R., Anal. Biochem., 2009, vol. 387, no. 1, p. 82.

    Article  CAS  PubMed  Google Scholar 

  21. International Agency for Research on Cancer, IARC Monograph on the Evaluation of Carcinogenic Risk to Humans, vol. 56, Lyon: IARC, 1993. https://monographs.iarc.fr/iarc-monographs-on-the-evaluation-of-carcinogenic-risks-to-humans-65. Accessed July 21, 2020.

  22. Food and Agriculture Organisation of the United Nations, FAO Food and Nutrition Paper, Rome: FAO, 1997. http://www.fao.org/docrep/W4128T/ W4128T00.htm. Accessed July 21, 2020.

  23. European Commission, Commission Regulation 1525/98, 1998. https://publications.europa.eu/en/ publication-detail/-/publication/b9fdaf6a-63f5-43fe-91a5-6bd2abc92de4/language-en. Accessed July 21, 2020.

  24. Commission Regulation (EU) no. 165/2010 of February 26, 2010, amending Regulation (EC) no. 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32010R0165. Accessed July 21, 2020.

  25. Kolosova, A.Y., Shim, W., Yang, Z., Eremin, S.A., and Chung, D., Anal. Bioanal. Chem., 2005, vol. 384, p. 286.

    Article  PubMed  CAS  Google Scholar 

  26. Betina, V., J. Chromatogr. A, 1985, vol. 334, no. 3, p. 211.

    Article  CAS  Google Scholar 

  27. Li, P., Zhang, Q., and Zhang, W., TrAC, Trends Anal. Chem., 2009, vol. 28, no. 9, p. 1115.

    Article  CAS  Google Scholar 

  28. Reiter, E., Zentek, J., and Razzazi, E., Mol. Nutr. Food Res., 2009, vol. 53, no. 4, p. 508.

    Article  CAS  PubMed  Google Scholar 

  29. Shephard, G.S., Anal. Bioanal. Chem., 2009, vol. 395, no. 5, p. 1215.

    Article  CAS  PubMed  Google Scholar 

  30. Lupo, A., Roebuck, C., Dutcher, M., Kennedy, J., and Abouzied, M., J. AOAC Int., 2010, vol. 93, no. 2, p. 587.

    Article  CAS  PubMed  Google Scholar 

  31. Trombley, A., Fan, T., and La Budde, R., J. AOAC Int., 2011, vol. 94, no. 5, p. 1519.

    Article  CAS  PubMed  Google Scholar 

  32. Escobar, A. and Regueiro, O.S., J. Food Prot., 2002, vol. 65, p. 219.

    Article  CAS  PubMed  Google Scholar 

  33. Park, J.W., Kim, E.K., and Kim, Y.B., Food Addit. Contam., 2004, vol. 21, no. 1, p. 70.

    Article  CAS  PubMed  Google Scholar 

  34. Yao, H., Hruska, Z., and Mavungu, J., World Mycotoxin J., 2015, vol. 8, no. 2, p. 181.

    Article  CAS  Google Scholar 

  35. Penn, S.G., He, L., and Natan, M.J., Curr. Opin. Chem. Biol., 2003, vol. 7, p. 609.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, Q., Lu, X., Yuan, C.G., Li, X.F., and Le, X.C., Anal. Chem., 2009, vol. 81, p. 7484.

    Article  CAS  PubMed  Google Scholar 

  37. Fan, A., Cai, S., Cao, Z., Lau, C., and Lu, J., Analyst, 2010, vol. 135, p. 1400.

    Article  CAS  PubMed  Google Scholar 

  38. Wu, S., Duan, N., Zhu, C., Ma, X., Wang, M., and Wang, Z., Biosens. Bioelectron., 2011, vol. 30, p. 35.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, X., Niessner, R., and Knopp, D., Sensors, 2014, vol. 14, p. 21535.

    Article  PubMed  CAS  Google Scholar 

  40. Urusov, A., Petrakova, A., Vozniak, M., Zherdev, A., and Dzantiev, B., Sensors, 2014, vol. 14, p. 21843.

    Article  PubMed  CAS  Google Scholar 

  41. Xie, G., Zhu, M., Liu, Z., Zhang, B., Shi, M., and Wang, S., Food Agric. Immunol., 2018, vol. 29, p. 564. https://doi.org/10.1080/09540105.2017.1416591

    Article  CAS  Google Scholar 

  42. Chang, Y. and Chen, D., J. Colloid Interface Sci., 2005, vol. 283, p. 446.

    Article  CAS  PubMed  Google Scholar 

  43. Kim, D.K., Zhan, Y., Voit, W., Rao, K.V., and Muhammed, M., J. Magn. Magn. Mater., 2001, vol. 225, p. 30.

    Article  CAS  Google Scholar 

  44. Ivanova, T. and Godjevargova, T., Anal. Lett., 2015, vol. 48, p. 1.

    Article  CAS  Google Scholar 

  45. Ngo, T., Appl. Biochem. Biotechnol., 1986, vol. 13, p. 213.

    Article  CAS  Google Scholar 

  46. Tyllianakis, P., Kakabakos, S., Evangelatos, P., and Ithakissios, D., Appl. Biochem. Biotechnol., 1993, vol. 38, p. 15.

    Article  CAS  Google Scholar 

  47. Bradford, M., Anal. Biochem., 1976, vol. 72, p. 248.

    Article  CAS  PubMed  Google Scholar 

  48. Becheva, Z., Gabrovska, K., and Godjevargova, T., Food Agric. Immunol., 2017, vol. 28, p. 1196.

    Article  CAS  Google Scholar 

  49. Silva, J., de Brito, W., and Mohallem, N., Mater. Sci. Eng., B, 2004, vol. 112, no. 2, p. 182.

    Article  CAS  Google Scholar 

  50. Naseri, M., Saion, E., Ahangar, H., Shaari, A., and Hashim, M., J. Nanomater., 2010, vol. 2010, p. 1.

    Article  CAS  Google Scholar 

  51. Pena, L., Ikenberry, M., Hohn, K., and Wang, D., J. Biomater. Nanobiotechnol., 2012, vol. 3, p. 342.

    Article  CAS  Google Scholar 

  52. Wei, Y., Han, B., Hu, X., Lin, Y., Wang, X., and Deng, X., Procedia Eng., 2012, vol. 27, p. 632.

    Article  CAS  Google Scholar 

  53. Mashhadizadeh, M.H. and Amoli-Diva, M., J. Nanomed. Nanotechnol., 2012, vol. 3, no. 4, 1000139. https://doi.org/10.4172/2157-7439.1000139

    Article  CAS  Google Scholar 

  54. Xu, Z., Liu, Q., and Finch, J.A., Appl. Surf. Sci., 1997, vol. 120, p. 269.

    Article  CAS  Google Scholar 

  55. White, L.D. and Trip, J.F., J. Colloid Interface Sci., 2000, vol. 232, p. 400.

    Article  CAS  PubMed  Google Scholar 

  56. Bruce, I.J. and Sen, T., Langmuir, 2005, vol. 21, no. 15, p. 7029.

    Article  CAS  PubMed  Google Scholar 

  57. Costa, V.M., de Souza, M.C.M., Fechine, P.B.A., Macedo, A.C., and Gonçalves, L.R.B., Braz. J. Chem. Eng., 2016, vol. 33, no. 3, p. 661.

    Article  CAS  Google Scholar 

  58. Hruska, Z., Yao, H., Kincaid, R., Brown, R.L., Cleveland, T.E., and Bhatnagar, D., Food Bioprocess Technol., 2014, vol. 7, p. 1195.

    Article  CAS  Google Scholar 

  59. Reed, G.F., Lynn, F., and Meade, B.D., Clin. Diagn. Lab. Immunol., 2002, vol. 9, no. 6, p. 1235.

    PubMed  PubMed Central  Google Scholar 

  60. Schultheiss, O.C. and Stanton, S.J., in Methods in Social Neuroscience, Harmon-Jones, E. and Beer, J.S., Eds., New York: Guilford, 2009, p. 17.

    Google Scholar 

  61. Das, B., Indian J. Clin. Biochem., 2011, vol. 26, no. 3, p. 235.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Quan, Y., Zhang, Y., Wang, S., Lee, N., and Kennedy, I.R., Anal. Chim. Acta, 2006, vol. 580, p. 1.

    Article  CAS  PubMed  Google Scholar 

  63. Yu, F.Y., Vdovenko, M.M., Wang, J.J., and Sakharov, I.Y., J. Agric. Food Chem., 2011, vol. 59, p. 809.

    Article  CAS  PubMed  Google Scholar 

  64. Asis, R., Di Paola, D., and Aldao, A., Food Agric. Immunol., 2002, vol. 14, p. 201.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by “Prof. Dr Assen Zlatarov” University Fund – Scientific Research Sector – 11/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonka I. Godjevargova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlatina R. Becheva, Gabrovska, K.I., Ivanov, Y.L. et al. Magnetic Nanoparticle Based Immunofluorescence Assay for the Determination of Aflatoxin B1 . J Anal Chem 76, 80–88 (2021). https://doi.org/10.1134/S1061934821010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821010020

Keywords:

Navigation