Ion Pair-dispersive Liquid–Liquid Microextraction Combined with Spectrophotometry for Carbamazepine Determination in Pharmaceutical Formulations and Biological Samples

Abstract

A simple, economical and selective method employing ion pair dispersive liquid−liquid microextraction (DLLME) coupled with spectrophotometric determination of carbamazepine (CBZ) in pharmaceutical preparations and biological samples was developed. The method is based on reduction of Mo(VI) to Mo(V) using a combination of ammonium thiocyanate and ascorbic acid in acidic medium to form a red binary Mo(V) thiocyanate complex. After addition of CBZ to the complex, extraction of the formed CBZ−Mo(V)−(SCN)6 was performed using a mixture of methylene chloride and methanol. Then, the measurement of target complex was performed at the wavelength of 470 nm. The important extraction parameters affecting the efficiency of DLLME were studied and optimized in detail. At the optimum conditions, the linear range was 0.02–0.2 µg/mL. Moreover, the limits of detection and quantification were 0.01 and 0.04 µg/mL, respectively. High enrichment factor was obtained (118). Good recoveries at 0.06, 0.15 and 0.2 µg/mL ranging from 93 to 102% were achieved. The proposed method was successfully applied to the determination of CBZ in pharmaceutical formulations and biological samples.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Fadhil, M.N. and Muhammad, S.M., Malays. J. Anal. Sci., 2014, vol. 18, no. 3, p. 491.

    Google Scholar 

  2. 2

    Džodić, P., Živanović, L., Protić, A., Ivanović, I., Veličković-Radovanović, R., Spasić, M., Lukić, S., and Živanović, S., J. Serb. Chem. Soc., 2012, vol. 77, no. 10, p. 1423.

    Article  Google Scholar 

  3. 3

    Karmakar, S., Biswas, S., Bera, R., Mondal, S., Kundu, A., Ali, M.A., and Sen, N., J. Food Drug Anal., 2015, vol. 23, no. 2, p. 327.

    CAS  Article  Google Scholar 

  4. 4

    Bertilsson, L., Höjer, B., Tybring, G., Osterloh, J., and Rane, A., Clin. Pharmacol. Ther., 1980, vol. 27, no. 1, p. 83.

    CAS  Article  Google Scholar 

  5. 5

    Queiroz, R.H.C., Bertucci, C., Malfará, W.R., Dreossi, S.A.C., Chaves, A.R., Valério, D.A.R., and Queiroz, M.E.C., J. Pharm. Biomed. Anal., 2008, vol. 48, no. 2, p. 428.

    CAS  Article  Google Scholar 

  6. 6

    Breton, H., Cociglio, M., Bressolle, F., Peyriere, H., Blayac, J.P., and Hillaire-Buys, D., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2005, vol. 828, no. 1, p. 80.

    CAS  Article  Google Scholar 

  7. 7

    Kadioglu, Y. and Demirkaya, F., Chromatographia, 2007, vol. 66, no. 1, p. 169.

    Article  Google Scholar 

  8. 8

    Makino, K., Goto, Y., Sueyasu, M., Futagami, K., Kataoka, Y., and Oishi, R., J. Chromatogr. B: Biomed. Sci. Appl., 1997, vol. 695, no. 2, p. 417.

    CAS  Article  Google Scholar 

  9. 9

    Çomoğlu, T., Gönül, N., Şener, E., Dal, A., and Tunçel, M., J. Liq. Chromatogr. Relat. Technol., 2006, vol. 29, no. 18, p. 2677.

    Article  Google Scholar 

  10. 10

    Lee, S.H., Li, M., and Suh, J.K., Anal. Sci., 2003, vol. 19, no. 6, p. 903.

    CAS  Article  Google Scholar 

  11. 11

    Abdulaziz, S., Basavaiah, K., Revanasiddappa, H., and Vinay, K., Malays. J. Anal. Sci., 2010, vol. 8, no. 2, p. 11.

    Google Scholar 

  12. 12

    Zhang, Z.Q., Liang, G.X., Ma, J., Lei, Y., and Lu, Y.M., Anal. Lett., 2006, vol. 39, no. 12, p. 2417.

    CAS  Article  Google Scholar 

  13. 13

    Ahmadi, F., Assadi, Y., Hosseini, S.M., and Rezaee, M., J. Chromatogr. A, 2006, vol. 1101, no. 1, p. 307.

    CAS  Article  Google Scholar 

  14. 14

    Zarei, A.R. and Nobakht, S., J. Trace Anal. Food Drugs, 2012, vol. 1, no. 2013, p. 1.

  15. 15

    Berijani, S., Assadi, Y., Anbia, M., Hosseini, M.-R.M., and Aghaee, E., J. Chromatogr. A, 2006, vol. 1123, no. 1, p. 1.

    CAS  Article  Google Scholar 

  16. 16

    Hatami, M., Karimnia, E., and Farhadi, K., J. Pharm. Biomed. Anal., 2013, vol. 85, p. 283.

    CAS  Article  Google Scholar 

  17. 17

    Zarei, A.R. and Gholamian, F., Anal. Biochem., 2011, vol. 412, no. 2, p. 224.

    CAS  Article  Google Scholar 

  18. 18

    Xiong, C., Ruan, J., Cai, Y., and Tang, Y., J. Pharm. Biomed. Anal., 2009, vol. 49, no. 2, p. 572.

    CAS  Article  Google Scholar 

  19. 19

    Latif, E., Hol, A., Kartal, A.A., Akdogan, A., Aydan, E., and Arslan, T., Acta Chim. Slov., 2014, vol. 62, no. 1, p. 196.

    Google Scholar 

  20. 20

    Niazi, A., Habibi, S., and Ramezani, M., Arabian J. Chem., 2015, vol. 8, no. 5, p. 706.

    CAS  Article  Google Scholar 

  21. 21

    Eftekhari, M., Javedani-Asleh, F., and Chamsaz, M., Food Anal. Methods, 2016, vol. 9, no. 7, p. 1985.

    Article  Google Scholar 

  22. 22

    Khalil, S.M., Mohamed, G., Zayed, M., and Elqudaby, H., Microchem. J., 2000, vol. 64, no. 2, p. 181.

    CAS  Article  Google Scholar 

  23. 23

    Frag, E.Y., Zayed, M., Omar, M., Elashery, S.E., and Mohamed, G.G., Arabian J. Chem., 2012, vol. 5, no. 3, p. 375.

    CAS  Article  Google Scholar 

  24. 24

    Mohamed, G.G., Nour El-Dien, F.A., Khalil, S.M., and Mohamed, N.A., Spectrochim. Acta, Part A, 2006, vol. 65, no. 5, p. 1221.

    Article  Google Scholar 

  25. 25

    Pourreza, N., Rastegarzadeh, S., and Larki, A., Talanta, 2015, vol. 134, p. 24.

    CAS  Article  Google Scholar 

  26. 26

    Kalhor, H., Hashemipour, S., Yaftian, M.R., and Shahdousti, P., Int. J. Ion Mobility Spectrom., 2016, vol. 19, no. 1, p. 51.

    CAS  Article  Google Scholar 

  27. 27

    Sabzi, R.E., Mohseni, N., Bahram, M., and Bari, M.R., Med. J. Chem., 2015, vol. 3, no. 6, p. 1111.

    CAS  Google Scholar 

  28. 28

    Rahmani, M., Kaykhaii, M., Ghasemi, E., and Tahernejad, M., J. Chromatogr. Sci., 2015, vol. 53, no. 7, p. 1210.

    CAS  Article  Google Scholar 

  29. 29

    Kozani, R.R., Mofid-Nakhaei, J., and Jamali, M.R., Environ. Monit. Assess., 2013, vol. 185, no. 8, p. 6531.

    CAS  Article  Google Scholar 

  30. 30

    Queiroz, M.E.C., Silva, S.M., Carvalho, D., and Lanças, F.M., J. Sep. Sci., 2002, vol. 25, nos. 1–2, p. 91.

    CAS  Article  Google Scholar 

  31. 31

    Kabra, P.M. and Marton, L.J., Clin. Chem., 1976, vol. 22, no. 7, p. 1070.

    CAS  Article  Google Scholar 

  32. 32

    Rezaee, M. and Mashayekhi, H.A., Anal. Methods, 2012, vol. 4, no. 9, p. 2887.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wijdan Shakir Khayoon.

Ethics declarations

The authors declare that there is no conflict of interests regarding the publication of this paper

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wijdan Shakir Khayoon, Hawraa Rahman Younis Ion Pair-dispersive Liquid–Liquid Microextraction Combined with Spectrophotometry for Carbamazepine Determination in Pharmaceutical Formulations and Biological Samples. J Anal Chem 75, 733–741 (2020). https://doi.org/10.1134/S1061934820060118

Download citation

Keywords:

  • carbamazepine
  • ion pair
  • dispersive liquid−liquid microextraction
  • biological sample
  • pharmaceutical formulation