Journal of Analytical Chemistry

, Volume 74, Issue 6, pp 528–533 | Cite as

Oxidative Coupling Reaction for the Determination of Lurasidone

  • M. S. SudhirEmail author
  • R. Venkata NadhEmail author
  • H. Manjunatha


A simple, sensitive, precise, accurate, highly reproducible and economical, visible spectrophotometric method for the determination lurasidone in bulk form was developed and validated. The method is based on the formation of an oxidative coupling product by the reaction of lurasidone with 3-methylbenzothiazolin-2-one hydrazone as a chromogenic reagent in presence of ferric chloride. The linear regression analysis data for the calibration plot showed good linear relationship within the concentration range of 0–100 μg/mL with a correlation coefficient (r) value of 0.9997. The limits of detection and quantitation are 0.6 and 1.7 µg/mL, respectively. The method was tested and validated according to ICH guidelines. The results demonstrated that the procedure is accurate, precise and reproducible (RSD < 2%).


lurasidone validation oxidative coupling 3-methylbenzothiazolin-2-one hydrazone (MBTH) 


  1. 1.
    ChemSpider. Accessed May 21, 2016.Google Scholar
  2. 2.
    Meyer, J.M., Loebel, A.D., and Schweizer, E., Expert Opin. Invest. Drugs, 2009, vol. 18, no. 11, p. 1715.CrossRefGoogle Scholar
  3. 3.
    Tae-Sung, K., Soo-Jin, K., Jongjoo, L., Dong-Jin, H., Myoungki, B., and Hongsik, M., Biomed. Chromatogr., 2011, vol. 25, no. 12, p. 1389.CrossRefGoogle Scholar
  4. 4.
    Damodar, D., Srinu, B., and Ramanjaneyulu, B., Drug Invent. Today, 2011, vol. 3, no. 12, p. 305.Google Scholar
  5. 5.
    Sudhir, M.S. and Nadh, R.V., J. Pharm. Biol. Chem. Sci., 2013, vol. 4, no. 1, p. 609.Google Scholar
  6. 6.
    Nikita, M., Patel, J., and Patel, M., Int. J. Res. Pharm. Sci., 2012, vol. 2, no. 2, p. 44.Google Scholar
  7. 7.
    Joshi, N.K., Shah, N., Dumasiya, M., and Patel, A., Pharma Sci. Monit., 2012, vol. 3, no. 4.Google Scholar
  8. 8.
    Kumar, K., Nadh, R.V., and Nagoji, K.E.V., Orient. J. Chem., 2013, vol. 29, no. 1, p. 263.CrossRefGoogle Scholar
  9. 9.
    Kumar, K., Nadh, R.V., and Nagoji, K.E.V., Orient. J. Chem., 2014, vol. 30, no. 2, p. 905.CrossRefGoogle Scholar
  10. 10.
    Sudhir, M.S. and Nadh, R.V., Orient. J. Chem., 2013, vol. 29, no. 4, p. 1507.CrossRefGoogle Scholar
  11. 11.
    Razeq, S.A. and Alarfaj, N.A., Egypt. J. Chem., 2008, vol. 17, p. 85.Google Scholar
  12. 12.
    Raja, G.V., Gopal, G.V., Mounika, V., Satyavathi, S., and Lavanya, C., Int. J. Pharm. Sci. Res., 2010, vol. 1, no. 2, p. 90.Google Scholar
  13. 13.
    Kumari, K.R. and Rao, G.D., Int. J. Pharm. Res. Dev., 2010, vol. 2, no. 1, p. 1.Google Scholar
  14. 14.
    Rao, L.V., Ramu, G., Kumar, M.S., and Rambabu, C., Int. J. PharmTech Res., 2012, vol. 4, no. 3, p. 957.Google Scholar
  15. 15.
    Bosch, M.E., Sanchez, A.J.R., Rojas, F.S., and Ojeda, C.B., Asian J. Pharm. Sci., 2008, vol. 3, no. 5, p. 217.Google Scholar
  16. 16.
    Nadia, F.Y., J. AOAC Int., 2003, vol. 86, no. 5, p. 935.Google Scholar
  17. 17.
    Rose, J., Advanced Physico-Chemical Experiments: A Textbook of Practical Physical Chemistry and Calculations, London: Pitman, 1964.Google Scholar
  18. 18.
    Alarfaj, N.A., Altamimi, S.A., and Almarshady, L.J., Asian J. Chem., 2009, vol. 21, no. 1, p. 217.Google Scholar
  19. 19.
    Darwish, I.A., Sultan, M.A., and Al-Arfaj, H.A., Int. J. Res. Pharm. Sci., 2010, vol. 1, no. 1, p. 43.Google Scholar
  20. 20.
    Salma, A.T., Alarfaj, N., and Hanan, A.H., Res. J. Chem. Environ., 2011, vol. 15, no. 2, p. 963.Google Scholar
  21. 21.
    Gayatri, A.L. and Grampurohit, D.N.D., Am. J. PharmTech. Res., 2011, vol. 1, no. 4, p. 1.Google Scholar
  22. 22.
    Raju, G.V., Jaffar, Sk., Priya, M.P., Ibrahim, S.M., Kumar, P.R., Muralinath, E., and Prasad, M.G., Int. J. Res. Rev. Appl. Sci., 2011, vol. 1, no. 4, p. 202.Google Scholar
  23. 23.
    Reddy, M.B.R., Gurupadayya, B.M., and Kumar, T.A., Ind. J. Chem. Technol., 2011, vol. 18, no. 6, p. 431.Google Scholar
  24. 24.
    Sowjanya, K., Thejaswini, J.C., Gurupadayya, B.M., and Indupriya, M., Pharma Chem., 2011, vol. 3, no. 1, p. 112.Google Scholar
  25. 25.
    Jyothirmayee, M., Reddy, S.P., Tulasi, V.D.B., and Rahaman, S.A., J. Pharm. Res., 2012, vol. 5, no. 4, p. 1967.Google Scholar
  26. 26.
    Saradhi, V.S., Kumar, D.D., and Koumudi, N.V., J. Pharm. Res., 2012, vol. 5, no. 3, p. 1380.Google Scholar
  27. 27.
    Rajeswari, M., Subrahmanyam, P., Rao, G.D., and Babu, G.S.S., Int. J. Pharma Bio Sci., 2011, vol. 2, no. 3, p. 210.Google Scholar
  28. 28.
    Pathi, P.J., Khan, P.S., Reddy, P.R., and Raju, N.A., J. Pharm. Res., 2011, vol. 4, no. 2, p. 524.Google Scholar
  29. 29.
    Sethi, R., Gandhi, S.V., Dubey, N., and Sethiya, N., Sethis HPLC: High Performance Liquid Chromatography: Quantitative Analysis of Pharmaceutical Formulations, New Delhi: CBS, 2015, vol. 5.Google Scholar
  30. 30.
    ICH Guidelines. Validation of Analytical Procedures: Text and Methodology, Q2 (R1), 2015.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Sri Subbaraya and Narayana CollegeNarasaraopetIndia
  2. 2.GITAM University – Bengaluru CampusKarnatakaIndia

Personalised recommendations