Journal of Analytical Chemistry

, Volume 74, Issue 6, pp 601–608 | Cite as

A Procedure for the Control of the Residual Chloramphenicol (Laevomycetin) in Food Products of Animal Origin

  • E. I. Polyanskikh
  • A. G. PolonevichEmail author
  • L. L. Belysheva
  • E. M. Rakhman’ko
  • S. M. Leshchev


A standardized procedure is developed for the determination of chloramphenicol in food products of animal origin of different groups using HPLC with tandem mass spectrometric detection with a limit of detection of 0.2 µg/kg. The extraction of chloramphenicol from aqueous solutions with organic solvents was studied. Optimized procedures for the extraction of chloramphenicol, purification of the extracts, and preconcentration of the analyte and the use of the deuterated form of chloramphenicol ensure quantitative determination using an external calibration method with an internal standard with the maximum expanded uncertainty of the results 18.4%.


chloramphenicol HPLC mass spectrometric detection HPLC–MS/MS extraction food products of animal origin 



  1. 1.
    Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Fundamentals of the Theory of Antibiotics), Moscow: Vysshaya Shkola, 2004.Google Scholar
  2. 2.
    Booth, D.M., Phenicols. pharmacology/antibacterial-agents/phenicols. Accessed November 14, 2017.Google Scholar
  3. 3.
    Commission decision 181/2003/EC of 13 March 2003 amending Decision 2002/657/EC as regards the setting of minimum required performance limits (MRPLs) for certain residues in food of animal origin, Off. J. Eur. Communities: Legis., 2003, no. 71, p. 17.Google Scholar
  4. 4.
    Hygienic standard of the Republic of Belarus no. 52: Indicators of safety for human food raw materials and food, approved on June 21, 2013, in Sbornik normativnykh dokumentov po prodovol’stvennomu syr’yu i pishchevym produktam (Collection of Regulations on Foodstuffs and Food Products), Minsk, 2014.Google Scholar
  5. 5.
    TR (Technical Regulations) TS 021/2011: Technical Regulations of the Customs Union “On Food Safety,” Minsk: BelGISS, 2015.Google Scholar
  6. 6.
    TR (Technical Regulations) TS 033/2013: Technical Regulations of the Customs Union “On the Safety of Milk and Dairy Products,” Minsk: BelGISS, 2015.Google Scholar
  7. 7.
    TR (Technical Regulations) TS 034/2013: Technical Regulations of the Customs Union “On the Safety of Meat and Meat Products,” Minsk: BelGISS, 2013.Google Scholar
  8. 8.
    GOST (State Standard) 31502-2012: Milk and Milk Products. Microbiological Methods of the Determination of Antibiotics, Moscow: Standartinform, 2013.Google Scholar
  9. 9.
    GOST (State Standard) R 55481-2013: Meat and Meat Products. Qualitative Method for Detection of Antibiotics Residues and Other Antimicrobial Chemotherapeutic Agents, Moscow: Standartinform, 2014.Google Scholar
  10. 10.
    MUK (Methodical Guidelines) 4.1.1912-04: Determination of Residual Amounts of chloramphenicol (Chloramphenicol, Chlormycetin) in Products of Animal Origin by High Performance Liquid Chromatography and Enzyme Immunoassay, Moscow, 2004.Google Scholar
  11. 11.
    GOST (State Standard) ISO 13493-2014: Meat and Meat Products. Method for Determination of Chloramphenicol (Levomycetin) Concentration Using Liquid Chromatography, Moscow, 2015.Google Scholar
  12. 12.
    GOST (State Standard) 33526-2015: Milk and Dairy Products. Method for the Determination of Antibiotics by High Performance Liquid Chromatography, Moscow: Standartinform, 2016.Google Scholar
  13. 13.
    GOST (State Standard) R 54904-2012: Food Products, Food Raw Materials. Method for Determination of Sulfonamides, Nitroimidazoles, Penicillins, Amphenicols by High Performance Liquid Chromatography–Mass Spectrometry, Moscow: Standartinform, 2013.Google Scholar
  14. 14.
    Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, Off. J. Eur. Communities: Legis., 2002, no. 221, p. 8.Google Scholar
  15. 15.
    Douny, C., Widart, J., de Pauw, E., Maghuin-Rogister, G., and Scippo, M.-L., Food Anal. Methods, 2013, vol. 6, no. 5, p. 1458.CrossRefGoogle Scholar
  16. 16.
    Borràs, S., Companyó, R., Guiteras, J., Bosch, J., Medina, M., and Termes, S., Anal. Bioanal. Chem., 2013, vol. 405, no. 26, p. 8475.CrossRefGoogle Scholar
  17. 17.
    Schneider, M.J., Lehotay, S.J., and Lightfield, A.R., Anal. Bioanal. Chem., 2015, vol. 407, no. 15, p. 4423.CrossRefGoogle Scholar
  18. 18.
    Moragues, F., Igualada, C., and León, N., Food Anal. Methods, 2012, vol. 5, no. 3, p. 416.CrossRefGoogle Scholar
  19. 19.
    Moragues, F., Igualada, C., and León, N., Food Anal. Methods, 2017, vol. 10, no. 3, p. 610.CrossRefGoogle Scholar
  20. 20.
    Ozcan, N. and Aycan, O., J. AOAC Int., 2013, vol. 96, no. 5, p. 1158.CrossRefGoogle Scholar
  21. 21.
    Zhong, G., Liu, X., and Wang, C., Agric. Biotechnol., 2017, vol. 6, no. 2, p. 51.Google Scholar
  22. 22.
    Ulanova, T.S., Karnazhitskaya, T.D., Pshenichnikova, E.O., and Nakhieva, E.A., Anal. Riska Zdorov’yu, 2013, no. 4, p. 82.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. I. Polyanskikh
    • 1
  • A. G. Polonevich
    • 1
    Email author
  • L. L. Belysheva
    • 1
  • E. M. Rakhman’ko
    • 2
  • S. M. Leshchev
    • 2
  1. 1.Scientific and Practical Center of HygieneMinskBelarus
  2. 2.Department of Chemistry, Belarusian State UniversityMinskBelarus

Personalised recommendations