Skip to main content
Log in

Separation of 2-Bromobutane, 2-Chlorobutane, 2-Chloropentane, and 2-Butanol Enantiomers Using a Stationary Phase Based on a Supramolecular Uracil Structure

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We proposed a new chiral stationary phase based on a supramolecular uracil structure with induced chirality. According to the Kondepudi effect, mechanical stirring leads to the formation of a supramolecular structure layer on the surface of an adsorbent with a predominance of one of types of chiral supramolecular clusters. The obtained stationary phase was used for the gas-chromatographic separation of enantiomers of 2-bromobutane, 2-chlorobutane, 2-chloropentane, and 2-butanol. The effectiveness of a 1-m column packed with an inert stationary phase modified with uracil is 200–400 theoretical plates. The enantiomers of 2-bromobutane and 2-chlorobutane were completely separated using the proposed stationary phase in 210 and 180 s, respectively, at 45°C. The enantiomers of 2-chloropentane were separated at 60 and 65°C in 170 and 160 s, respectively. The enantiomers of 2-butanol were partially separated at 100°C. The enantioselectivity of the proposed stationary phase is probably associated with the adsorption of one enantiomer outside the cavity of the supramolecular structure and the other enantiomer inside it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Schurig, V., J. Chromatogr. A, 2001, vol. 906, p. 275.

    Article  CAS  PubMed  Google Scholar 

  2. Gus’kov, V.Yu. and Maistrenko, V.N., J. Anal. Chem., 2018, vol. 73, no. 10, p. 937.

    Article  Google Scholar 

  3. Adly, F.G., Antwi, N.Y., and Ghanem, A., Chirality, 2016, vol. 28, no. 2, p. 97.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, X., Zhang, C., Sun, G., Xu, X., Tan, Y., Wu, H., Cao, R., Liu, J., and Wu, J., Instrum. Sci. Technol., 2012, vol. 40, p. 194.

    Article  CAS  Google Scholar 

  5. Peluso, P., Mamane, V., and Cossu, S., J. Chromatogr. A, 2014, vol. 1363, p. 11.

    Article  CAS  PubMed  Google Scholar 

  6. Cetina, M., Benci, K., Wittine, K., and Mintas, M., Cryst. Growth Des., 2012, vol. 12, p. 5262.

    Article  CAS  Google Scholar 

  7. Xie, Z.-X., Long, L.-Sh., Zhong, H.-P., Zhao, W., Mao, B.-W., Xu, X., and Zheng, L.-S., J. Phys. Chem. C, 2008, vol. 112, p. 4209.

    Google Scholar 

  8. Gus’kov, V.Y., Gainullina, Yu.Yu., Ivanov, S.P., and Kudasheva, F.Kh., J. Chromatogr. A, 2014, vol. 1356, p. 230.

    Article  CAS  PubMed  Google Scholar 

  9. Lackinger, M. and Heckl, W.M., Langmuir, 2009, vol. 25, no. 19, p. 11307.

    Article  CAS  PubMed  Google Scholar 

  10. Reck, G., Kretschmer, R.-G., Kutschabsky, L., and Pritzkow, W., Acta Crystallogr., Sect. A: Found. Crystallogr., 1988, vol. 44, no. 4, p. 417.

    Article  Google Scholar 

  11. Tejedor, R.M., Oriol, L., Serrano, J.L., Partal Ureña, F., and López González, J.J., Adv. Funct. Mater., 2007, vol. 17, p. 3486.

    Article  CAS  Google Scholar 

  12. Shen, Z., Wang, T., and Liu, M., Angew. Chem., Int. Ed. Engl., 2014, vol. 53, p. 13424.

    Article  CAS  Google Scholar 

  13. Fujiki, M., Symmetry, 2014, vol. 6, p. 677.

    Article  CAS  Google Scholar 

  14. Mineo, P., Villari, V., Scamporrinoa, E., and Micalib, N., Soft Matter, 2014, vol. 10, p. 44.

    Article  CAS  PubMed  Google Scholar 

  15. Vera, F., Serrano, J.L., de Santo, M.P., Barberi, R., Ros, M.B., and Sierra, T., J. Mater. Chem., 2012, vol. 22, p. 18025.

    Article  CAS  Google Scholar 

  16. Bruin, A.G.D., Barbourm, E., and Briscoe, W.H., Polym. Int., 2014, vol. 63, p. 165.

    Article  CAS  Google Scholar 

  17. Ruiz, U., Pagliusi, P., Provenzano, C., Shibaev, V.P., and Cipparrone, G., Adv. Funct. Mater., 2012, vol. 22, p. 2964.

    Article  CAS  Google Scholar 

  18. Zhang, L., Qin, L., Wang, X., Cao, H., and Liu, M., Adv. Mater., 2014, vol. 26, p. 6959.

    Article  CAS  PubMed  Google Scholar 

  19. Katsonis, N., Xu, H., Haak, R.M., Kudernac, T., Tomović, Z., George, S., Auweraer, M.V.D., Schenning, A.P.H.J., Meijer, E.W., Feringa, B.L., and Feyter, S.D., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, p. 4997.

    Article  CAS  Google Scholar 

  20. Ohta, E., Sato, H., Ando, S., Kosaka, A., Fukushima, T., Hashizume, D., Yamasaki, M., Hasegawa, K., Muraoka, A., Ushiyama, H., Yamashita, K., and Aida, T., Nat. Chem., 2010, vol. 3, p. 68.

    Article  CAS  PubMed  Google Scholar 

  21. Kondepudi, D.K., Digits, J., and Bullock, K., Chirality, 1995, vol. 7, p. 62.

    Article  CAS  Google Scholar 

  22. Kondepudi, D.K. and Asakura, K., Acc. Chem. Res., 2001, vol. 34, p. 946.

    Article  CAS  PubMed  Google Scholar 

  23. Kondepudi, D.K., Int. J. Quantum Chem., 2004, vol. 98, p. 222.

    Article  CAS  Google Scholar 

  24. Kawasaki, T., Suzuki, K., Hakoda, Y., and Soai, K., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, p. 496.

    Article  CAS  Google Scholar 

  25. Saito, Y. and Hyuga, H., J. Phys. Soc. Jpn., 2005, vol. 74, no. 2, p. 535.

    Article  CAS  Google Scholar 

  26. Gus’kov, V.Yu., Gainullina, Yu.Yu., Sukhareva, D.A., Sidelnikov, A.V., and Kudasheva, F.Kh., Int. J. Appl. Chem., 2016, vol. 12, no. 3, p. 359.

    Google Scholar 

  27. Gus’kov, V.Yu., Sukhareva, D.A., Arslanova, I.V., and Musabirov, D.E., J. Anal. Chem., 2017, vol. 72, no. 10, p. 1089.

    Article  Google Scholar 

  28. Venema, A., Henderiks, H., and Geest, R.V., J. High Resolut. Chromatogr., 1991, vol. 14, p. 676.

    Article  CAS  Google Scholar 

  29. Zhang, J.-H., Xie, S.-M., Chen, L., Wang, B.-J., He, P.-G., and Yuan, L.-M., Anal. Chem., 2015, vol. 15, no. 15, p. 7817.

    Article  CAS  Google Scholar 

  30. Masunov, A.E., Grishchenko, S.I., and Zorkii, P.M., Zh. Fiz. Khim., 1993, vol. 63, no. 2, p. 221.

    Google Scholar 

  31. Stewart, R.F. and Jensen, L.H., Acta Crystallogr., 1967, vol. 23, no. 6, p. 1102.

    Article  CAS  Google Scholar 

  32. Cavallini, M., Aloisi, G., Bracali, M., and Guidelli, R., J. Electroanal. Chem., 1998, vol, vol. 444, p. 75.

  33. Li, W.-H., Haiss, W., Floate, S., and Nichols, R.J., Langmuir, 1999, vol, vol. 15, p. 4875.

  34. Papageorgiou, A.C., Fischer, S., Reichert, J., Diller, K., Blobner, F., Klappenberger, F., Allegretti, F., Seitsonen, A.P., and Barth, J.V., ACS Nano, 2012, vol. 6, no. 3, p. 2477.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Gus’kov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nafikova, A.R., Allayarova, D.A. & Gus’kov, V.Y. Separation of 2-Bromobutane, 2-Chlorobutane, 2-Chloropentane, and 2-Butanol Enantiomers Using a Stationary Phase Based on a Supramolecular Uracil Structure. J Anal Chem 74, 565–569 (2019). https://doi.org/10.1134/S1061934819060078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934819060078

Keywords:

Navigation