Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 6, pp 565–569 | Cite as

Separation of 2-Bromobutane, 2-Chlorobutane, 2-Chloropentane, and 2-Butanol Enantiomers Using a Stationary Phase Based on a Supramolecular Uracil Structure

  • A. R. Nafikova
  • D. A. Allayarova
  • V. Yu. Gus’kovEmail author
ARTICLES

Abstract

We proposed a new chiral stationary phase based on a supramolecular uracil structure with induced chirality. According to the Kondepudi effect, mechanical stirring leads to the formation of a supramolecular structure layer on the surface of an adsorbent with a predominance of one of types of chiral supramolecular clusters. The obtained stationary phase was used for the gas-chromatographic separation of enantiomers of 2-bromobutane, 2-chlorobutane, 2-chloropentane, and 2-butanol. The effectiveness of a 1-m column packed with an inert stationary phase modified with uracil is 200–400 theoretical plates. The enantiomers of 2-bromobutane and 2-chlorobutane were completely separated using the proposed stationary phase in 210 and 180 s, respectively, at 45°C. The enantiomers of 2-chloropentane were separated at 60 and 65°C in 170 and 160 s, respectively. The enantiomers of 2-butanol were partially separated at 100°C. The enantioselectivity of the proposed stationary phase is probably associated with the adsorption of one enantiomer outside the cavity of the supramolecular structure and the other enantiomer inside it.

Keywords:

enantiomers 2-halogenated alkanes gas chromatography supramolecular structure uracil chirality induction 

Notes

REFERENCES

  1. 1.
    Schurig, V., J. Chromatogr. A, 2001, vol. 906, p. 275.CrossRefGoogle Scholar
  2. 2.
    Gus’kov, V.Yu. and Maistrenko, V.N., J. Anal. Chem., 2018, vol. 73, no. 10, p. 937.CrossRefGoogle Scholar
  3. 3.
    Adly, F.G., Antwi, N.Y., and Ghanem, A., Chirality, 2016, vol. 28, no. 2, p. 97.CrossRefGoogle Scholar
  4. 4.
    Zhang, X., Zhang, C., Sun, G., Xu, X., Tan, Y., Wu, H., Cao, R., Liu, J., and Wu, J., Instrum. Sci. Technol., 2012, vol. 40, p. 194.CrossRefGoogle Scholar
  5. 5.
    Peluso, P., Mamane, V., and Cossu, S., J. Chromatogr. A, 2014, vol. 1363, p. 11.CrossRefGoogle Scholar
  6. 6.
    Cetina, M., Benci, K., Wittine, K., and Mintas, M., Cryst. Growth Des., 2012, vol. 12, p. 5262.CrossRefGoogle Scholar
  7. 7.
    Xie, Z.-X., Long, L.-Sh., Zhong, H.-P., Zhao, W., Mao, B.-W., Xu, X., and Zheng, L.-S., J. Phys. Chem. C, 2008, vol. 112, p. 4209.Google Scholar
  8. 8.
    Gus’kov, V.Y., Gainullina, Yu.Yu., Ivanov, S.P., and Kudasheva, F.Kh., J. Chromatogr. A, 2014, vol. 1356, p. 230.CrossRefGoogle Scholar
  9. 9.
    Lackinger, M. and Heckl, W.M., Langmuir, 2009, vol. 25, no. 19, p. 11307.CrossRefGoogle Scholar
  10. 10.
    Reck, G., Kretschmer, R.-G., Kutschabsky, L., and Pritzkow, W., Acta Crystallogr., Sect. A: Found. Crystallogr., 1988, vol. 44, no. 4, p. 417.CrossRefGoogle Scholar
  11. 11.
    Tejedor, R.M., Oriol, L., Serrano, J.L., Partal Ureña, F., and López González, J.J., Adv. Funct. Mater., 2007, vol. 17, p. 3486.CrossRefGoogle Scholar
  12. 12.
    Shen, Z., Wang, T., and Liu, M., Angew. Chem., Int. Ed. Engl., 2014, vol. 53, p. 13424.CrossRefGoogle Scholar
  13. 13.
    Fujiki, M., Symmetry, 2014, vol. 6, p. 677.CrossRefGoogle Scholar
  14. 14.
    Mineo, P., Villari, V., Scamporrinoa, E., and Micalib, N., Soft Matter, 2014, vol. 10, p. 44.CrossRefGoogle Scholar
  15. 15.
    Vera, F., Serrano, J.L., de Santo, M.P., Barberi, R., Ros, M.B., and Sierra, T., J. Mater. Chem., 2012, vol. 22, p. 18025.CrossRefGoogle Scholar
  16. 16.
    Bruin, A.G.D., Barbourm, E., and Briscoe, W.H., Polym. Int., 2014, vol. 63, p. 165.CrossRefGoogle Scholar
  17. 17.
    Ruiz, U., Pagliusi, P., Provenzano, C., Shibaev, V.P., and Cipparrone, G., Adv. Funct. Mater., 2012, vol. 22, p. 2964.CrossRefGoogle Scholar
  18. 18.
    Zhang, L., Qin, L., Wang, X., Cao, H., and Liu, M., Adv. Mater., 2014, vol. 26, p. 6959.CrossRefGoogle Scholar
  19. 19.
    Katsonis, N., Xu, H., Haak, R.M., Kudernac, T., Tomović, Z., George, S., Auweraer, M.V.D., Schenning, A.P.H.J., Meijer, E.W., Feringa, B.L., and Feyter, S.D., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, p. 4997.CrossRefGoogle Scholar
  20. 20.
    Ohta, E., Sato, H., Ando, S., Kosaka, A., Fukushima, T., Hashizume, D., Yamasaki, M., Hasegawa, K., Muraoka, A., Ushiyama, H., Yamashita, K., and Aida, T., Nat. Chem., 2010, vol. 3, p. 68.CrossRefGoogle Scholar
  21. 21.
    Kondepudi, D.K., Digits, J., and Bullock, K., Chirality, 1995, vol. 7, p. 62.CrossRefGoogle Scholar
  22. 22.
    Kondepudi, D.K. and Asakura, K., Acc. Chem. Res., 2001, vol. 34, p. 946.CrossRefGoogle Scholar
  23. 23.
    Kondepudi, D.K., Int. J. Quantum Chem., 2004, vol. 98, p. 222.CrossRefGoogle Scholar
  24. 24.
    Kawasaki, T., Suzuki, K., Hakoda, Y., and Soai, K., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, p. 496.CrossRefGoogle Scholar
  25. 25.
    Saito, Y. and Hyuga, H., J. Phys. Soc. Jpn., 2005, vol. 74, no. 2, p. 535.CrossRefGoogle Scholar
  26. 26.
    Gus’kov, V.Yu., Gainullina, Yu.Yu., Sukhareva, D.A., Sidelnikov, A.V., and Kudasheva, F.Kh., Int. J. Appl. Chem., 2016, vol. 12, no. 3, p. 359.Google Scholar
  27. 27.
    Gus’kov, V.Yu., Sukhareva, D.A., Arslanova, I.V., and Musabirov, D.E., J. Anal. Chem., 2017, vol. 72, no. 10, p. 1089.CrossRefGoogle Scholar
  28. 28.
    Venema, A., Henderiks, H., and Geest, R.V., J. High Resolut. Chromatogr., 1991, vol. 14, p. 676.CrossRefGoogle Scholar
  29. 29.
    Zhang, J.-H., Xie, S.-M., Chen, L., Wang, B.-J., He, P.-G., and Yuan, L.-M., Anal. Chem., 2015, vol. 15, no. 15, p. 7817.CrossRefGoogle Scholar
  30. 30.
    Masunov, A.E., Grishchenko, S.I., and Zorkii, P.M., Zh. Fiz. Khim., 1993, vol. 63, no. 2, p. 221.Google Scholar
  31. 31.
    Stewart, R.F. and Jensen, L.H., Acta Crystallogr., 1967, vol. 23, no. 6, p. 1102.CrossRefGoogle Scholar
  32. 32.
    Cavallini, M., Aloisi, G., Bracali, M., and Guidelli, R., J. Electroanal. Chem., 1998, vol, vol. 444, p. 75.Google Scholar
  33. 33.
    Li, W.-H., Haiss, W., Floate, S., and Nichols, R.J., Langmuir, 1999, vol, vol. 15, p. 4875.Google Scholar
  34. 34.
    Papageorgiou, A.C., Fischer, S., Reichert, J., Diller, K., Blobner, F., Klappenberger, F., Allegretti, F., Seitsonen, A.P., and Barth, J.V., ACS Nano, 2012, vol. 6, no. 3, p. 2477.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. R. Nafikova
    • 1
  • D. A. Allayarova
    • 1
  • V. Yu. Gus’kov
    • 1
    Email author
  1. 1.Department of Chemistry, Bashkir State UniversityUfaRussia

Personalised recommendations