Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 6, pp 540–549 | Cite as

Preconcentration and Determination Of Fluoxetine and Norfluoxetine in Biological and Water Samples with β-cyclodextrin Multi-walled Carbon Nanotubes as a Suitable Hollow Fiber Solid phase Microextraction Sorbent and High Performance Liquid Chromatography

  • M. GhorbaniEmail author
  • M. Esmaelnia
  • M. Aghamohammadhasan
  • H. Akhlaghi
  • O. Seyedin
  • Z. Ahmadi Azari
ARTICLES
  • 53 Downloads

Absract

‒A simple, selective and sensitive hollow fiber solid phase microextraction (SPME) combined with HPLC for the determination of fluoxetine (FLX) and norfluoxetine (NFLX) in human urine and real water samples has been developed and fully validated. Two solid phase microextraction sorbents, β-cyclodextrin functionalized multi-walled carbon nanotubes (βCD-MWCNTs) and acyl chloride functionalized MWCNTs, were synthesized and placed in the surface and pores of polypropylene hollow fiber by sol‒gel technique. In order to compare the analytical performance of βCD-MWCNTs as a new SPME sorbent with acyl chloride functionalized MWCNTs and MWCNTs, the hollow fiber device was directly immersed into the sample solution under a magnetic stirring. The βCD-MWCNTs are quite effective for extraction of fluoxetine and norfluoxetine. The extraction parameters such as pH of donor phase, donor phase volume, stirring rate, extraction time, type and volume of desorption solvent, and desorption time were thoroughly optimized. Under optimal conditions, the proposed method shows good linearity in the range of 1‒340 and 0.9‒360 ng/mL with a correlation coefficients of 0.9952 and 0.9967, low limits of detection of 0.4 and 0.3 ng/mL, and the high pre-concentration factors of 144 and 151 for determination of FLX and NFLX, respectively. Usage of proposed method for determination of FLX and NFLX in human urine and real water samples demonstrated a promising, simple, selective and sensitive sample preparation and determination method that can be applied in routine analysis.

Keywords:

fluoxetine norfluoxetine human urine samples β-cyclodextrin MWCNTs hollow fiber solid phase microextraction 

Notes

FUNDING

The authors wish to thank the Payame Noor University, Islamic Azad University of Mashhad and Hakim Sabzevari University for the financial support of this project.

REFERENCES

  1. 1.
    Sabbioni, C., Bugamelli, F., Varani, G., Mercolini, L., Musenga, A., Saracino, M.A., Fanali, S., and Raggi, M.A., J. Pharm. Biomed. Anal., 2004, vol. 36, p. 351.CrossRefGoogle Scholar
  2. 2.
    Aronoff, G.R., Bergstrom, R.F., Pottratz, S.T., Sloan, R.S., Wolen, R.L., and Lemberger, L., Clin. Pharmacol. Ther., 1984, vol. 36, p. 138.CrossRefGoogle Scholar
  3. 3.
    Wong, D.T., Bymaster, F.P., Reid, L.R., Mayle, D.A., Krushinski, J.H., and Robertson, J.H., Neuropsychopharmacology, 1993, vol. 8, p. 337.CrossRefGoogle Scholar
  4. 4.
    de Freitas, D.F., Dobrovolskin Porto, C.E., Pizzamiglio Vieira, E., and Pereira Bastos de Siqueira, M.E., J. Pharm. Biomed. Anal., 2010, vol. 51, p. 170.CrossRefGoogle Scholar
  5. 5.
    Fernandes, C., dos Santos Neto, A.J., Rodrigues, J.C., Alves, C., and Lanças, F.M., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2007, vol. 847, p. 217.CrossRefGoogle Scholar
  6. 6.
    Felicioni Oliveira, A.F., Costa de Figueiredo, E., and dos Santos Neto, A.J., J. Pharm. Biomed. Anal., 2013, vol. 73, p. 53.CrossRefGoogle Scholar
  7. 7.
    Costa Queiroz, M.E., Oliveira, E.B., Breton, F., and Pawliszyn, J., J. Chromatogr. A, 2007, vol. 1174, p. 72.CrossRefGoogle Scholar
  8. 8.
    Gonçalves Silva, B.J., Lanças, F.M., and Costa Queiroz, M.E., J. Chromatogr. A, 2009, vol. 1216, p. 8590.CrossRefGoogle Scholar
  9. 9.
    Unceta, N., Gómez-Caballero, A., Sánchez, A., Millán, S., Sampedro, M.C., Goicolea, M.A., Sallés, J., and Barrio, R.J., J. Pharm. Biomed. Anal., 2008, vol. 46, p. 763.CrossRefGoogle Scholar
  10. 10.
    Ghorbani, M., Chamsaz, M., and Rounaghi, G.H., J. Sep. Sci., 2016, vol. 39, p. 1082.CrossRefGoogle Scholar
  11. 11.
    Ghorbani, M., Chamsaz, M., and Rounaghi, G.H., Anal. Bioanal. Chem., 2016, vol. 408, p. 4247.CrossRefGoogle Scholar
  12. 12.
    Bagheri, H., Piri-Moghadam, H., and Naderi, M., TrAC, Trends Anal. Chem., 2012, vol. 34, p. 126.CrossRefGoogle Scholar
  13. 13.
    Wang, D., Chong, S.L., and Malik, A., Anal. Chem., 1997, vol. 69, p. 4566.CrossRefGoogle Scholar
  14. 14.
    Chong, S.L., Wang, D., Hayes, J.D., Wilhite, B.W., and Malik, A., Anal. Chem., 1997, vol. 69, p. 3889.CrossRefGoogle Scholar
  15. 15.
    Kumar, A., Malik, A.K., Tewary, D.K., and Singh, B., Anal. Chim. Acta, 2008, vol. 610, p. 1.CrossRefGoogle Scholar
  16. 16.
    Pyrzynska, K., TrAC, Trends Anal. Chem., 2010, vol. 29, p. 718.CrossRefGoogle Scholar
  17. 17.
    Valcárcel, M., Cárdenas, S., Simonet, B.M., Moliner-Martínez, Y., and Lucena, R., TrAC, Trends Anal. Chem., 2008, vol. 27, p. 34.CrossRefGoogle Scholar
  18. 18.
    Wang, J.X., Jiang, D.-Q., Gu, Z.Y., and Yan, X.P., J. Chromatogr. A, 2006, vol. 1137, p. 8.CrossRefGoogle Scholar
  19. 19.
    Kandah, M.I. and Meunier, J.L., J. Hazard. Mater., 2007, vol. 146, p. 283.CrossRefGoogle Scholar
  20. 20.
    Lu, C., Liu, C., and Rao, G.P., J. Hazard. Mater., 2008, vol. 151, p. 239.CrossRefGoogle Scholar
  21. 21.
    Shih, Y.H. and Li, M.S., J. Hazard. Mater., 2008, vol. 154, p. 21.CrossRefGoogle Scholar
  22. 22.
    Soylak, M. and Ercan, O., J. Hazard. Mater., 2009, vol. 168, p. 1527.CrossRefGoogle Scholar
  23. 23.
    Tuzen, M. and Soylak, M., J. Hazard. Mater., 2007, vol. 147, p. 219.CrossRefGoogle Scholar
  24. 24.
    Tankiewicz, M., Morrison, C., and Biziuk, M., Microchem. J., 2013, vol. 108, p. 117.CrossRefGoogle Scholar
  25. 25.
    Es’haghi, Z., Khalili, M., Khazaeifar, A., and Rounaghi, G.H., Electrochim. Acta, 2011, vol. 56, p. 3139.CrossRefGoogle Scholar
  26. 26.
    Yang, Y., Chen, J., and Shi, Y.P., Talanta, 2012, vol. 97, p. 222.CrossRefGoogle Scholar
  27. 27.
    Es’haghi, Z., Rezaeifar, Z., Rounaghi, G.H., Nezhadi, Z.A., and Golsefidi, M.A., Anal. Chim. Acta, 2011, vol. 689, p. 122.CrossRefGoogle Scholar
  28. 28.
    Es’haghi, Z., Golsefidi, M.A., Saify, A., Tanha, A.A., Rezaeifar, Z., and Alian-Nezhadi, Z., J. Chromatogr. A, 2010, vol. 1217, p. 2768.CrossRefGoogle Scholar
  29. 29.
    Wen, X., Tu, C., and Lee, H.K., Anal. Chem., 2004, vol. 76, p. 228.CrossRefGoogle Scholar
  30. 30.
    Song, X.Y., Shi, Y.P., and Chen, J., Talanta, 2012, vol. 100, p. 153.CrossRefGoogle Scholar
  31. 31.
    Fernandes, C., dos Santos Neto, A.J., Rodrigues, J.C., Alves, C., and Lanças, F.M., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2007, vol. 847, p. 217.CrossRefGoogle Scholar
  32. 32.
    Sagristà, E., Cortés, J.M., Larsson, E., Salvadó, V., Hidalgo, M., and Jönsson, J.A., J. Sep. Sci., 2012, vol. 35, p. 2460.CrossRefGoogle Scholar
  33. 33.
    Felicioni Oliveira, A.F., Costa de Figueiredo, E., and dos Santos Neto, Á.J., J. Pharm. Biomed. Anal., 2013, vol. 73, p. 53.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. Ghorbani
    • 1
    Email author
  • M. Esmaelnia
    • 2
  • M. Aghamohammadhasan
    • 1
  • H. Akhlaghi
    • 2
  • O. Seyedin
    • 3
  • Z. Ahmadi Azari
    • 2
  1. 1.Department of Chemistry, Payame Noor UniversityTehranIran
  2. 2.Department of Chemistry, Mashhad Branch, Islamic Azad UniversityMashhadIran
  3. 3.Department of Mathematics and Computer Sciences, Hakim Sabzevari UniversitySabzevarIran

Personalised recommendations