Journal of Analytical Chemistry

, Volume 74, Issue 6, pp 570–573 | Cite as

Characteristic Profiles of Biologically Active Substances of Blood Plasma Samples from Patients with Tuberculosis Obtained by HPLC

  • S. A. Solov’eva
  • E. A. Bessonova
  • L. A. KartsovaEmail author


Toxic metabolites (N-acetylisoniazid, pyrazinoic acid, and desacetylrifampicin) of first-line anti-tuberculosis drugs (ethambutol, pyrazinamide, rifampicin, and isoniazid) are identified by liquid chromatography–mass spectrometry, which is important in selecting the required dosages of these drugs for the maximum therapeutic effects and the reduction of side effects. Characteristic chromatographic profiles of blood plasma samples from donors with pulmonary tuberculosis (“pathology”) and a clinically healthy group (“norm”) are obtained and processed by principal component analysis and the k-nearest neighbor method. A perspective of this approach for obtaining of additional diagnostic criteria for pulmonary tuberculosis is shown.


first-line anti-tuberculosis drugs metabolites HPLC–mass spectrometry characteristic profiles of biologically active compounds chemometrics 



  1. 1.
    Preez, I.D., Luies, L., and Loots, D.T., Biomarkers Med., 2017, vol. 11, no. 2, p. 179.CrossRefGoogle Scholar
  2. 2.
    Eoh, H., Tuberculosis, 2014, vol. 94, no. 6, p. 538.CrossRefGoogle Scholar
  3. 3.
    Zhong, L., Zhou, J., Chen, X., and Yin, Y., Int. J. Clin. Exp. Pathol., 2016, vol. 9, no. 3, p. 3256.Google Scholar
  4. 4.
    Frediani, J.K., Jones, D.P., Tukvadze, N., Uppal, K., Sanikidze, E., Kipiani, M., Tran, V.T., Hebbar, G., Walker, D.I., Kempker, R.R., Kurani, S.S., Colas, R.A., Dalli, J., Tangpricha, V., Serhan, C.N., Blumberg, H.M., and Ziegler, T.R., PLoS One, 2014, vol. 9, no. 10, e108854.CrossRefGoogle Scholar
  5. 5.
    Gowda, G.N., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., and Raftery, D., Expert Rev. Mol. Diagn., 2008, vol. 8, no. 5, p. 617.CrossRefGoogle Scholar
  6. 6.
    Wishart, D.S., Nat. Rev. Drug Discovery, 2016, vol. 15, no. 7, p. 473.CrossRefGoogle Scholar
  7. 7.
    Johnson, C.H., Ivanisevic, J., and Siuzdak, G., Nat. Rev. Mol. Cell Biol., 2016, vol. 17, no. 7, p. 451.CrossRefGoogle Scholar
  8. 8.
    Kartsova, L.A. and Ob”edkova, E.V., J. Anal. Chem., 2013, vol. 68, no. 4, p. 291.CrossRefGoogle Scholar
  9. 9.
    Palomino, J.C. and Martin, A., Antibiotics, 2014, vol. 3, no. 3, p. 317.CrossRefGoogle Scholar
  10. 10.
    Schaberg, T., Rebhan, K., and Lode, H., Eur. Respir. J., 1996, vol. 9, p. 2026.CrossRefGoogle Scholar
  11. 11.
    Bessonova, E.A., Kartsova, L.A., and Solov’eva, S.A., Analitika Kontrol’, 2016, vol. 20, no. 2, p. 161.Google Scholar
  12. 12.
    Zhou, Z., Chen, L., Liu, P., Shen, M., and Zou, F., Anal. Sci., 2010, vol. 26, no. 11, p. 1133.CrossRefGoogle Scholar
  13. 13.
    Vu, D.H., Koster, R.A., Bolhuis, M.S., Greijdanus, B., Altena, R.V., Nguyen, D.H., Brouwers, J.R., Uges, D.R., and Alffenaar, J.W., Talanta, 2014, vol. 121, p. 9.CrossRefGoogle Scholar
  14. 14.
    Arbex, M.A., Varella Mde, C., Siqueira, H.R., and Mello, F.A., J. Bras. Pneumol, 2010, vol. 36, no. 5, p. 626.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Solov’eva
    • 1
  • E. A. Bessonova
    • 1
  • L. A. Kartsova
    • 1
    Email author
  1. 1.Institute of Chemistry, St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations