Skip to main content
Log in

Fluorometric Determination of Artemisinin Using the Pyronin B–Microperoxidase-11 System

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive, rapid, and simple fluorimetric procedure for the determination of artemisinin in a concentration range of 0.1–7 μM was developed with the use of microperoxidase-11 as a peroxidase biomimetic (RSD = 0.8% at LOQ, n = 5; LOD = 7.1 nM (3s0)). The determination is based on the fluorescence quenching of the cationic xanthene dye pyronin B (Stern–Volmer quenching constant, 0.101 μM–1) in the presence of microperoxidase-11. The procedure was tested in the analysis of a biologically active additive based on an Artemisia annua wormwood extract. The correctness of the results of the fluorimetric determination of artemisinin in a biologically active dietary supplement was confirmed by HPLC–mass spectrometry. The use of oligopeptide microperoxidase-11 instead of heme-containing proteins (hemoglobin, cytochrome c, and horseradish peroxidase) made it possible to shorten the duration of artemisinin determination by a factor of 2 with the retention of sensitivity and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Artemisinin and artemisinin-based combination therapy resistance: Status report, Geneva: World Health Organization, 2017.

  2. O’Neill, P.M., Barton, V.E., and Ward, S.A., Molecules, 2010, vol. 15, no. 3, p. 1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ellman, A., Outlooks Pest Manage., 2010, vol. 21, no. 2, p. 84.

    Article  Google Scholar 

  4. Soktoeva, T.E., Ryzhova, G.L., Dychko, K.A., Khasanov, V.V., Zhigzhitzhapova, S.V., and Radneva, L.D., Khim. Rastit. Syr’ya, 2011, no. 4, p. 131.

  5. Ho, W.E., Peh, H.Y., Chan, T.K., and Wong, W.S., Pharmacol. Ther., 2014, vol. 142, no. 1, p. 126.

    Article  CAS  PubMed  Google Scholar 

  6. Yang, X. and XZ, W., Mini-Rev. Med. Chem., 2015, vol. 15, no. 12, p. 1011.

    Article  CAS  PubMed  Google Scholar 

  7. Das, A.K., Ann. Med. Health Sci. Res., 2015, vol. 5, no. 2, p. 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Breuer, E. and Efferth, T., Nat. Prod. Bioprospect., 2014, vol. 4, no. 2, p. 113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, L., Yin, H., Yang, Z., Zhang, K., Liu, L., and Shen, H., Chin. J. Anal. Chem., 2006, vol. 36, no. 2, p. 173.

    Article  Google Scholar 

  10. Chen, L., Zhang, Y., Yin, H., Liu, L., Yang, Z., and Shen, H., Wuhan Univ. J. Nat. Sci., 2006, vol. 11, no. 3, p. 704.

    Article  CAS  Google Scholar 

  11. Chen, L., Liu, L., and Shen, H., Chin. Sci. Bull., 2005, vol. 50, no. 17, p. 1834.

    Article  CAS  Google Scholar 

  12. Chen, L., Yin, H., Yang, Z., Zhang, K., Liu, L., and Shen, H., Chin. J. Anal. Chem., 2005, vol. 23, no. 8, p. 1047.

    Article  CAS  Google Scholar 

  13. Marconi, G., Monti, S., Manoli, F., Esposti, A.D., and Mayer, B., Chem. Phys. Lett., 2004, vol. 383, nos. 5–6, p. 566.

    Article  CAS  Google Scholar 

  14. Marques, H.M., Dalton Trans., 2007, no. 39, p. 4371.

  15. Yarmann, A., Neumann, B., Bosserdt, M., Gajovich-Eichelmann, N., and Scheller, F.W., Biosensors, 2012, vol. 2, no. 2, p. 189.

    Article  CAS  Google Scholar 

  16. Miyazaki, C.M., Shimizu, F.M., Mejía-Salazar, J.R., Oliveira, O.N., Jr., and Ferreira, M., Nanotecnology, 2017, vol. 28, no. 14, 145501.

    Article  CAS  Google Scholar 

  17. Muginova, S.V., Vakhraneva, E.S., Myasnikova, D.A., Kazarian, S.G., and Shekhovtsova, T.N., Anal. Lett., 2018, vol. 51, no. 6, p. 870.

    Article  CAS  Google Scholar 

  18. Jung, M., Lee, K., Kendrick, H., Robinson, B.L., and Croft, S.L., J. Med. Chem., 2002, vol. 45, no. 2, p. 4940.

    Article  CAS  PubMed  Google Scholar 

  19. Gur, B. and Meral, K., Spectrochim. Acta, Part A, 2013, vol. 101, no. 1, p. 306.

    Article  CAS  Google Scholar 

  20. Titford, M., Biotech. Histochem., 2007, vol. 82, nos. 4–5, p. 227.

    Article  CAS  PubMed  Google Scholar 

  21. Oyadomari, M., Kabuto, M., Wariishi, H., and Tanaka, H., Biochem. Eng. J., 2003, vol. 15, no. 3, p. 159.

    Article  CAS  Google Scholar 

  22. Data for Biochemical Research, Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Johns, K.M., Eds., Oxford: Clarendon, 1988, 3rd ed.

    Google Scholar 

  23. Gaspar, S., Popescu, I.C., Gazaryan, I.G., Bautis-ta, A.G., Sakharov, I.Y., Mattiasson, B., and Csoregi, B., Electrochim. Acta, 2000, vol. 46, no. 2, p. 255.

    Article  CAS  Google Scholar 

  24. Bruce, G.R. and Gill, P.S., J. Chem. Educ., 1999, vol. 76, no. 6, p. 805.

    Article  CAS  Google Scholar 

  25. Onganer, Y. and Quitevis, E., J. Phys. Chem., 1992, vol. 96, no. 20, p. 7996.

    Article  CAS  Google Scholar 

  26. Toprak, M. and Arik, M., Turk. J. Chem., 2010, vol. 34, no. 2, p. 285.

    CAS  Google Scholar 

  27. O’Reilly, N. and Magner, E., Phys. Chem. Chem. Phys., 2011, vol. 13, no. 12, p. 5304.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y., Lu, H., and Pang, F., J. Chem. Eng. Data, 2009, vol. 54, no. 3, p. 762.

    Article  CAS  Google Scholar 

  29. Cayman Chemical Company. www.caymanchem.com/pdfs/11816.pdf. Accessed January 1, 2018.

  30. Amponsaa-Karikari, A., Kishikawa, N., Ohba, Y., Nakashima, K., and Kuroda, N., Biomed. Chromatogr., 2006, vol. 20, no. 11, p. 1157.

    Article  CAS  PubMed  Google Scholar 

  31. Denisov, E.T., Solodova, S.L., and Denisova, E.G., Russ. Chem. Rev., 2010, vol. 79, no. 11, p. 981.

    Article  CAS  Google Scholar 

  32. Green, M.D., Mount, D.L., Todd, G.D., and Capomacchia, A.C., J. Chromatogr. A, 1999, vol. 695, no. 2, p. 237.

    Article  Google Scholar 

  33. Wang, M., Park, C., Wu, Q., and Simon, J.E., J. Agric. Food Chem., 2005, vol. 53, no. 18, p. 7010.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, C-Z., Zhou, H-Y., and Zhao, Y., Anal. Chim. Acta, 2007, vol. 581, no. 2, p. 298.

    Article  CAS  PubMed  Google Scholar 

  35. Bharati, A. and Sabat, S.C., Talanta, 2002, vol. 82, no. 3, p. 1033.

    Article  CAS  Google Scholar 

  36. Sreevidya, T.V. and Narayana, B., Indian J. Chem. Technol., 2008, vol. 15, no. 1, p. 59.

    CAS  Google Scholar 

  37. Bai, H., Wang, C., Chen, J., Peng, J., and Cao, Q., Biosens. Bioelectron., 2015, vol. 64, no. 2, p. 352.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Cand. Sci. (Chem.) A.N. Stavrianidi (Moscow State University) for his assistance in the HPLC–MS analysis of BADS.

This work was supported by the Russian Foundation for Basic Research (project no. 15-03-05-064a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Shekhovtsova.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muginova, S.V., Vakhraneva, E.S., Myasnikova, D.A. et al. Fluorometric Determination of Artemisinin Using the Pyronin B–Microperoxidase-11 System. J Anal Chem 74, 100–107 (2019). https://doi.org/10.1134/S1061934818120079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934818120079

Keywords:

Navigation