Journal of Analytical Chemistry

, Volume 73, Issue 3, pp 277–282 | Cite as

Electrochemical Behavior and Determination of Rutin at the Copper Nanoparticles-Doped Zeolite A/Graphene Oxide-Modified Electrode

  • T. Rohani
  • A. Ghaderi


In this work, a novel Cu‒zeolite A/graphene modified glassy carbon electrode was applied for the determination of rutin. The Cu‒zeolite A/graphene composites were prepared using copper doped zeolite A and graphene oxide as the precursor, subsequently reduced by chemical agents. Based on the Cu‒zeolite A/graphene modified electrode, the overpotential of the rutin oxidation was lowered by ~300 mV. Also the proposed Cu‒zeolite A/graphene modified electrode showed higher electrocatalytic performance than zeolite A/graphene electrode or graphene modified electrode. The electrochemical behavior of copper incorporated in the zeolite A modified electrode illustrated the adsorption-controlled reaction at the modified electrode. The behavior of electrocatalytic oxidation of rutin at the modified electrode was investigated. The diffusion coefficient of rutin was equal to 4.2 × 10–7 cm2/s. A linear calibration graph was obtained for rutin over the concentration range of 2.3 × 10–7–2.5 × 10–3 M. The detection limit for rutin was 1.2 × 10–7 M. The RSDs of 10 replicate measurements performed on a single electrode at rutin concentrations between 2.3 × 10–7–2.5 × 10–3 M were between 1.1 and 2.1%. Study of the influence of potentially interfering substances on the peak current of rutin showed that the method was highly selective. The proposed electrode was used for the determination of rutin in real samples with satisfactory results.


rutin graphene Cu doped zeolite A electrocatalytic oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam, V., Mikelova, R., Hubalek, J., Hanustiak, P., Beklova, M., Hodek, P., Horna, A., Trnkova, L., Stiborova, M., Zeman, L., and Kizek, R., Sensors, 2007, vol. 7, no. 10, p. 2402.CrossRefGoogle Scholar
  2. 2.
    Ramanathan, R., Das, W.P., and Tan, C.H., Int. J. Oncol., 1993, vol. 3, p.115.Google Scholar
  3. 3.
    Hasan, A. and Ahmad, I., Fitoterapia, 1996, vol. 67, no. 2, p.182.Google Scholar
  4. 4.
    Gene, R.M., Cartana, C., Adzet, T., Marin, E., Panella, T., and Canigueral, S., Planta Med., 1996, vol. 62, p.232.CrossRefGoogle Scholar
  5. 5.
    Ren, W., Qiao, Z., Wang, H., and Zhang, L., Med. Res. Rev., 2003, vol. 23, no. 4, p.519.CrossRefGoogle Scholar
  6. 6.
    Dall’Agnol, R., Ferraz, A., Bernardi, A.P., Albring, D., Nor, C., Sarmento, L., Lamb, L., Hass, M., von Poser, G., and Schapoval, E.E.S., Phytomedicine, 2003, vol. 10, no. 6, p.511.CrossRefGoogle Scholar
  7. 7.
    Song, Z. and Wang, L., J. Agric. Food. Chem., 2001, vol. 49, no. 12, p. 5697.CrossRefGoogle Scholar
  8. 8.
    Song, Z. and Hou, S., Talanta, 2002, vol. 57, no. 1, p.59.CrossRefGoogle Scholar
  9. 9.
    Yang, D., Li, H., Li, Z., Hao, Z., and Li, J., Luminescence, 2010, vol. 25, no. 6, p.436.CrossRefGoogle Scholar
  10. 10.
    Abou-Donia, A.H., Toaima, S.M., Hammoda, H.M., and Shawky, E., Chromatographia, 2006, vol. 64, nos. 1–2, p.109.CrossRefGoogle Scholar
  11. 11.
    Lu, Q.H., Ba, C.D., and Chen, D.Y., J. Pharm. Biomed. Anal., 2008, vol. 47, nos. 4–5, p.888.CrossRefGoogle Scholar
  12. 12.
    Sun, Y., Guo, T., Sui, Y., and Li, F.M., J. Sep. Sci., 2003, vol. 26, p. 1203.CrossRefGoogle Scholar
  13. 13.
    Li, C., Chen, A., Chen, X., and Hu, Z., J. Pharm. Biomed. Anal., 2005, vol. 39, p.125.CrossRefGoogle Scholar
  14. 14.
    Chen, G., Zhang, J.X., and Ye, J.N., J. Chromatogr. A, 2001, vol. 923, p.255.CrossRefGoogle Scholar
  15. 15.
    Chen, G., Zhang, H., and Ye, J., Anal. Chim. Acta, 2000, vol. 423, p.69.CrossRefGoogle Scholar
  16. 16.
    Wang, J., Wang, H., and Han, S., Acta Chromatogr., 2012, vol. 24, no. 4, p.679.CrossRefGoogle Scholar
  17. 17.
    Shen, Y.P., Yin, H.W., Chen, B., Xia, G.H., Yang, H., and Jia, X.B., Pharmacogn. Mag., 2012, vol. 8, no. 29, p.60.CrossRefGoogle Scholar
  18. 18.
    Ishii, K., Furuta, T., and Kasuya, Y., J. Chromatogr. B: Biomed. Sci. Appl., 2001, vol. 759, no. 1, p.161.CrossRefGoogle Scholar
  19. 19.
    Zu, Y., Li, C., Fu, Y., and Zhao, C., J. Pharm. Biomed. Anal., 2006, vol. 41, no. 3, p.714.CrossRefGoogle Scholar
  20. 20.
    Wu, H., Chen, M., Fan, Y., Elsebaei, F., and Zhu, Y., Talanta, 2012, vol. 88, p.222.CrossRefGoogle Scholar
  21. 21.
    Xu, H., Li, Y., Tang, H.W., Liu, C.M., and Wu, Q.S., Anal. Lett., 2010, vol. 43, p.893.CrossRefGoogle Scholar
  22. 22.
    Hassan, H.N.A., Barsoum, B.N., and Habib, I.H.I., J. Pharm. Biomed. Anal., 1999, vol. 20, p.315.CrossRefGoogle Scholar
  23. 23.
    Legnerova, Z., Satinsky, D., and Solich, P., Anal. Chim. Acta, 2003, vol. 497, p.165.CrossRefGoogle Scholar
  24. 24.
    Ziyatdinova, G., Aytuganova, I., Nizamova, A., Morozov, M., and Budnikov, H., Collect. Czech. Chem. Commun., 2011, vol. 76, p. 1619.CrossRefGoogle Scholar
  25. 25.
    Zhang, H.F., Sheng, Q.L., and Zheng, J.B., Electrochemistry, 2011, vol. 17, p.107.Google Scholar
  26. 26.
    Mousty, C. and Cosnier, S., Sanchez-Paniagua Lopez,M., Lopez-Cabarcos, E., and Lopez-Ruiz, B., Electroanalysis, 2007, vol. 19, p.253.CrossRefGoogle Scholar
  27. 27.
    Wei, Y., Wang, G.F., Li, M.G., Wang, C., and Fang, B., Microchim. Acta, 2007, vol. 158, p.269.CrossRefGoogle Scholar
  28. 28.
    Xu, Q., Wang, R., Lu, Q.Y., Ye, W.B., Cao, X.W., and Wu, X.Q., Chin. J. Anal. Chem., 2006, vol. 34, p.971.CrossRefGoogle Scholar
  29. 29.
    Serban, S. and Murr, N.E., Biosens. Bioelectron., 2004, vol. 20, p.161.CrossRefGoogle Scholar
  30. 30.
    Arvand, M., Vaziri, M., and Vejdani, M., Electrochim. Acta, 2004, vol. 49, p. 2139.CrossRefGoogle Scholar
  31. 31.
    Dong, J.P., Zhou, X.J., Zhao, H.B., Xu, J.Q., and Sun, Y.B., Microchim. Acta, 2011, vol. 174, p.281.CrossRefGoogle Scholar
  32. 32.
    Imbert, F.E., Moreno, C., Montero, A., Fontal, B., and Lujano, J., Zeolites, 1994, vol. 14, no. 5, p.374.CrossRefGoogle Scholar
  33. 33.
    Sharp, M., Peterson, M., and Edstrom, K., J. Electroanal. Chem., 1979, vol. 95, p.123.CrossRefGoogle Scholar
  34. 34.
    Skoog, D.A., Holler, F.J., and Nieman, T.A., Principles of Instrumental Analysis, Philadelphia: Harcourt Brace College, 1998, 5th ed.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations