Skip to main content
Log in

Specific Features of Energy Dispersive X-Ray Electron Probe Microanalysis in the Low Vacuum Mode

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Experimental data on the generation and detection of characteristic X-radiation of elements in electron probe microanalysis of dielectric samples in the low vacuum mode without the deposition of conducting coatings are discussed. The main advantage of the considered method of analysis is the stability of the intensity ratio between diagnostic analyte lines in the wide range of currents of the electron probe and gas phase pressure in the chamber in the range 60–130 Pa, sufficient for obtaining undistorted images of the surface of dielectrics. The stability of the intensity ratio ensures obtaining correct data of the quantitative analysis of nonconducting samples without the deposition of conducting coatings. The main features of low-vacuum microanalysis for the range of gas phase pressures used are discussed, which can create additional difficulties in the study. Among such features is a possibility of the manifestation of reflexes of gas-phase elements, significant underestimation of the relative emission intensity from lighter elements in the composition of the studied samples, loss of scanning locality in the analysis of small sites on the sample surface. An example of the correct quantitative elemental analysis of a dielectric surface without the deposition of an electroconductive coating for a number of aluminosilicates is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taskaev, S.V., Galimov, D.M., Zherebtsov, D.A., Khovailo, V.V., Gorshenkov, M.V., Vasil’ev, A.N., Golovanov, A.N., Volkova, O.S., and Timoshenko, V.Yu., Chelyab. Fiz.-Mat. Zh., 2014, vol. 330, no. 1, p.68.

    Google Scholar 

  2. Newbury, D.E. and Ritchie, N.W.M., Scanning, 2013, vol. 35, no. 3, p.141.

    Article  CAS  Google Scholar 

  3. Lavrent’ev, Yu.G., Karmanov, N.S., and Usova, L.V., Russ. Geol. Geophys., vol. 56, no. 8, p. 2015.

  4. Zot’ev, D.V., Filippov, M.N., and Yagola, A.G., Vychisl. Metody Program., 2003, vol. 4, no. 1, p.26.

    Google Scholar 

  5. Kupriyanova, T.A., Minikaev, L.R., Tangishev, R.R., Stepovich, M.A., and Filippov, M.N., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2013, vol. 7, no. 2, p.268.

    Article  CAS  Google Scholar 

  6. Andrianov, M.V., Aristov, V.V., Gostev, A.V., and Rau, E.I., Poverkhnost’, 2004, no. 3, p.40.

    Google Scholar 

  7. Maslovskaya, A.G., Russ. Phys. J., 2010, vol. 53, no. 1, p.36.

    Article  CAS  Google Scholar 

  8. Cazaux, J., J. Electron Spectrosc. Relat. Phenom., 1999, vol. 105, nos. 2–3, p.155.

    Article  CAS  Google Scholar 

  9. Kortov, V.S. and Zvonarev, S.V., Mat. Model., 2008, vol. 20, no. 6, p.79.

    Google Scholar 

  10. Khouchaf, L., Gaseous scanning electron microscope (GSEM): Applications and improvement, in Scanning Electron Microscopy, InTech China, 2001, p.3.

    Google Scholar 

  11. Newbury, D.E., J. Res. Natl. Inst. Stand. Technol., 2002, vol. 107, no. 6, p.567.

    Article  CAS  Google Scholar 

  12. Reed, S.J.B., Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, New York: Cambridge University Press, 2005.

    Book  Google Scholar 

  13. Rau, E.I., Evstaf’eva, E.N., and Andrianov, M.V., Phys. Solid State, 2008, vol. 50, no. 4, p.621.

    Article  CAS  Google Scholar 

  14. Newbury, D.E. and Ritchie, N.W.M., J. Mater. Sci., 2015, vol. 50, no. 2, p. 493.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Pukhov.

Additional information

Original Russian Text © D.E. Pukhov, S.V. Kurbatov, 2018, published in Zhurnal Analiticheskoi Khimii, 2018, Vol. 73, No. 3, pp. 205–213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pukhov, D.E., Kurbatov, S.V. Specific Features of Energy Dispersive X-Ray Electron Probe Microanalysis in the Low Vacuum Mode. J Anal Chem 73, 249–256 (2018). https://doi.org/10.1134/S1061934818030103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934818030103

Keywords

Navigation