Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 7, pp 803–809 | Cite as

Application of pressure in capillary zone electrophoresis to study the aggregation of chitosan 2-hydroxybutoxypropylcarbamate

  • N. G. Vanifatova
  • A. V. Rudnev
  • G. A. Gabrielyan
  • R. Kh. Dzhenloda
  • A. A. Burmistrov
  • E. V. Lazareva
  • T. G. Dzherayan
Articles

Abstract

It is demonstrated that the use of pressure extends the possibilities of capillary zone electrophoresis in studying aggregative states of substances, ensuring the detection of the presence of several types of aggregates with different electrophoretic mobilities. The electropherograms of chitosan 2-hydroxybutoxypropylcarbamate (CHBPC) in citrate solutions with pH 3.1, 4.5, and 5.8 indicate the dependence of aggregation on pH. A comparison of the data for CHBPC obtained by capillary zone electrophoresis, static light scattering, and scanning electron microscopy revealed a relationship between the electrophoretic mobility and sizes of aggregates, varying from 140 nm to several micrometers. The size of aggregates can be estimated by hydrodynamic contribution to their mobility. The effectiveness of the use of CHBPC for the dynamic modification of capillaries is shown.

Keywords

chitosan 2-hydroxybutoxypropylcarbamate capillary zone electrophoresis static light scattering scanning electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skryabin, K.G., Mikhailov, S.N., and Varlamov, V.P., Khitozan (Chitosan), M.: Tsentr Bioinzheneriya, Ross. Akad. Nauk, 2013.Google Scholar
  2. 2.
    Rinaudo, M., Prog. Polym. Sci., 2006, vol. 31, no. 7, p. 603.CrossRefGoogle Scholar
  3. 3.
    Filippova, O.E. and Korchagina, E.V., Polym. Sci., Ser. A, 2012, vol. 54, no. 7, p. 552.CrossRefGoogle Scholar
  4. 4.
    Sorlier, P., Denuziere, A., Viton, C., and Domard, A., Biomacromolecules, 2001, vol. 2, no. 3, p. 765.CrossRefGoogle Scholar
  5. 5.
    Sorlier, P., Viton, C., and Domard, A., Biomacromolecules, 2002, vol. 3, no. 6, p. 1336.CrossRefGoogle Scholar
  6. 6.
    Sorlier, P., Rochas, C., Morfin, I., Viton, C., and Domard, A., Biomacromolecules, 2003, vol. 4, no. 4, p. 1034.CrossRefGoogle Scholar
  7. 7.
    Schatz, C., Pichot, C., Delair, T., Viton, C., and Domard, A., Langmuir, 2003, vol. 19, no. 23, p. 9896.CrossRefGoogle Scholar
  8. 8.
    Schatz, C., Viton, C., Delair, T., Pichot, C., and Domard, A., Biomacromolecules, 2003, vol. 4, no. 3, p. 641.CrossRefGoogle Scholar
  9. 9.
    Popa-Nita, S., Alcouffe, P., Rochas, C., David, L., and Domard, A., Biomacromolecules, 2010, vol. 11, no. 1, p. 6.CrossRefGoogle Scholar
  10. 10.
    Pa, J.-H. and Yu, T.L., Macromol. Chem. Phys., 2001, vol. 202, no. 7, p. 985.CrossRefGoogle Scholar
  11. 11.
    Ottøy, M.H., Vårum, K.M., Christensen, B.E., Anthonsen, M.W., and Smidsrød, O., Carbohydr. Polym., 1996, vol. 31, no. 4, p. 253.CrossRefGoogle Scholar
  12. 12.
    Anthonsen, M.W., Varum, K.M., Hermansson, A.M., Smidsrød, O., and Brant, D.A., Carbohydr. Polym., 1994, vol. 25, no. 1, p. 13.CrossRefGoogle Scholar
  13. 13.
    Korchagina, E.V. and Philippova, O.E., Langmuir, 2012, vol. 28, no. 20, p. 7880.CrossRefGoogle Scholar
  14. 14.
    Fedotov, P.S., Vanifatova, N.G., Shkinev, V.M., and Spivakov, B.Ya., Anal. Bioanal. Chem., 2011, vol. 400, no. 6, p. 1787.CrossRefGoogle Scholar
  15. 15.
    Ban, E., Choi, O.-K., Ryu, J.-C., Young, S., and Yoo, Y.S., Electrophoresis, 2001, vol. 22, no. 11, p. 2217.CrossRefGoogle Scholar
  16. 16.
    Fu, X., Huang, L., Zhai, M., Li, W., and Liu, H., Carbohydr. Polym., 2007, vol. 68, no. 3, p. 511.CrossRefGoogle Scholar
  17. 17.
    Mnatsakanyan, M., Thevarajah, J.J., Roi, R.S., Lauto, A., Gaborieau, M., and Castignolles, P., Anal. Bioanal. Chem., 2013, vol. 405, no. 21, p. 6873.CrossRefGoogle Scholar
  18. 18.
    Wu, C., Carbohydr. Polym., 2014, vol. 111, p. 236.CrossRefGoogle Scholar
  19. 19.
    Fu, X., Huang, L., Gao, F., Li, W., Pang, N., Zhai, M., Liu, H., and Wu, M., Electrophoresis, 2007, vol. 28, no. 12, p. 1958.CrossRefGoogle Scholar
  20. 20.
    Fu, X., Liu, Y., Li, W., Pang, N., Nie, H., Liu, H., and Liu Cai, Z., Electrophoresis, 2009, vol. 30, no. 10, p. 1783.CrossRefGoogle Scholar
  21. 21.
    Liu, Y., Fu, X., Bai, Y., Zhai, M., Liao, Y., Liao, J., and Liu, H., Anal. Bioanal. Chem., 2011, vol. 399, no. 8, p. 2821.CrossRefGoogle Scholar
  22. 22.
    Cárdenas, G., Paredes, J.C., Cabrera, G., and Casals, P., J. Appl. Polym. Sci., 2002, vol. 86, no. 11, p. 2742.CrossRefGoogle Scholar
  23. 23.
    Philippova, O.E., Volkov, E.V., Sitnikova, N.L., Khokhlov, A.R., Desbrieres, J., and Rinaudo, M., Biomacromolecules, 2001, vol. 2, no. 2, p. 483.CrossRefGoogle Scholar
  24. 24.
    Vanifatova, N., Rudnev, A., and Spivakov, B., Electrophoresis, 2013, vol. 34, no. 15, p. 2145.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. G. Vanifatova
    • 1
  • A. V. Rudnev
    • 1
  • G. A. Gabrielyan
    • 2
  • R. Kh. Dzhenloda
    • 1
  • A. A. Burmistrov
    • 1
  • E. V. Lazareva
    • 3
  • T. G. Dzherayan
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State University of Design and TechnologyMoscowRussia
  3. 3.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations