Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 7, pp 724–733 | Cite as

Solid-phase luminescence determination of tetracycline in bottled water using chemically modified silica

  • L. A. Goncharova
  • N. G. Kobylinska
  • M. E. Díaz-Garcia
  • V. N. Zaitsev
Articles

Abstract

Possibility of using chemically modified silica (CMS) with covalently immobilized sulfonic and ethylenediaminetriacetate (ED3A) groups for the adsorption preconcentration and extraction of tetracycline (TC) from aqueous solutions is studied. The conditions of complex formation by europium(III) ions on the surface of these adsorbents are optimized. The effect of citrate and Eu3+ ions on the luminescence intensity of the Eu–TC complex is shown. The luminescence properties of SiO2ED3AEu and SiO2SO3HEu systems with tetracyclines are studied depending on the acidity of the medium, time of phase contact, the ratio of the volume of the solution to the weighed portion of the adsorbent, and concentrations of the adsorbed substances. It is found that tetracycline is quantitatively extracted by CMS as a complex with europium(III) ions in pH range 6.5–8.0; adsorption capacity to tetracycline in the Henry region is as high as 0.07–0.09 mmol/g and partition coefficients are 103–104 mL/g. A procedure is developed for the solid-phase luminescence determination of tetracycline using SiO2SO3HEu and SiO2ED3AEu systems with limits of detection of 0.8 and 2.0 nM, respectively; linearity range is 1 × 10–9–1 × 10–5 M. The procedure is tested in the analysis of model mixtures and samples of bottled water.

Keywords

tetracycline antibiotics adsorption preconcentration sensitized luminescence bottled water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Turk, I.M. and Diab, A.M., J. Int. Environ. Appl. Sci., 2009, vol. 4, no. 2, p. 214.Google Scholar
  2. 2.
    Falcone-Dias, M.F., Vaz-Moreira, I., and Manaia, C.M., Water Res., 2012, vol. 46, no. 11, p. 3612.CrossRefGoogle Scholar
  3. 3.
    Kümmerer, K., Chemosphere, 2009, vol. 75, p. 417.CrossRefGoogle Scholar
  4. 4.
    Kümmerer, K., Chemosphere, 2009, vol. 75, p. 435.CrossRefGoogle Scholar
  5. 5.
    Hexing, W., Na, W., Bin, W., Qi, Zh., Hong, F., Chaowei, F., Chuanxi, T., Feng, J., Ying, Zh., Yue, Ch., and Jiang, Q., Environ. Sci. Technol., 2016, vol. 50, no. 5, p. 2692.CrossRefGoogle Scholar
  6. 6.
    Calamari, D., Zuccato, E., Castiglioni, S., Bagnati, R., and Fanelli, R., Environ. Sci. Technol., 2003, vol. 37, p. 1241.CrossRefGoogle Scholar
  7. 7.
    Farber, H., Hyg. Med., 2002, vol. 27, p. 35.Google Scholar
  8. 8.
    Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., and Buxton, H.T., Environ. Sci. Technol., 2002, vol. 36, p. 1202.CrossRefGoogle Scholar
  9. 9.
    Dayan, A.D., Vet. Microbiol., 1993, vol. 35, p. 213.CrossRefGoogle Scholar
  10. 10.
    Massa, S., Petruccioli, M., Fanelli, M., and Gori, L., Microbiol. Res., 1995, vol. 150, no. 4, p. 403.CrossRefGoogle Scholar
  11. 11.
    LabMoloko. http://labmoloko.ru/?mcat=316&rec=16907114. Cited August 10, 2016.Google Scholar
  12. 12.
    Loetanantawong, B., Suracheep, C., Somasundrum, M., and Surareungchai, W., Anal. Chem., 2004, vol. 76, p. 2266.CrossRefGoogle Scholar
  13. 13.
    Pena, A., Pelantova, N., Lino, C.M., Silveira, M.N., and Solich, P., J. Agric. Food Chem., 2005, vol. 53, p. 3784.CrossRefGoogle Scholar
  14. 14.
    Cinquina, A.L., Longo, F., Anastasi, G., Giannetti, L., and Cozzani, R., J. Chromatogr. A, 2003, vol. 987, nos. 1–2, p. 227.CrossRefGoogle Scholar
  15. 15.
    Vityukova, E.O., Egorova, A.V., Bel’tyukova, S.V., and Malinka, E.V., Vestn. Odesskogo Nats. Univ., 2004, vol. 9, no. 6, p. 97.Google Scholar
  16. 16.
    Arnaud, N. and Georges, J., Analyst, 2001, vol. 126, p. 694.CrossRefGoogle Scholar
  17. 17.
    Chen, G., Li, Q., Liu, G., Qin, F., and Du, Y., in Physical Methods in Food Chemistry, Tunick, M.H. and Onwulata, C.I., Eds., Wyndmoor, PA: Am. Chem. Soc., 2013, ch. 4, p. 49.Google Scholar
  18. 18.
    Feng, P., Li, Y.F., and Huang, Zh.C., Anal. Chim. Acta, 2001, vol. 442, no. 1, p. 89.CrossRefGoogle Scholar
  19. 19.
    Tlili, I., Caria, G., Ouddane, B., Ghorbel-Abid, I., Ternane, R., Trabelsi-Ayadi, M., and Net, S., Sci. Total Environ., 2016, vols. 563–564, p. 424.CrossRefGoogle Scholar
  20. 20.
    Cheng, W., Jiang, L., Lu, N., Ma, L., Sun, X., Luo, Y., Lin, K., and Cui, C., Anal. Methods, 2015, vol. 7, no. 5, p. 1777.CrossRefGoogle Scholar
  21. 21.
    Liu, L., Chen, G., and Fishman, M.L., Anal. Chim. Acta, 2005, vol. 528, no. 2, p. 261.CrossRefGoogle Scholar
  22. 22.
    Udalova, A.Yu., Dmitrienko, S.G., Natchuk, S.V., Apyari, V.V., and Zolotov, Yu.A., J. Anal. Chem., 2015, vol. 70, no. 3, p. 292.CrossRefGoogle Scholar
  23. 23.
    Chi-Lap, Kuong, Yu, T., and Chen, Y., Anal. Bioanal. Chem., 2009, vol. 395, p. 1433.CrossRefGoogle Scholar
  24. 24.
    Motorina, A.S., Kolesnik, D.L., and Tananaiko, O.Yu., Ukr. Khim. Zhurn., 2010, vol. 76, no. 12, p. 113.Google Scholar
  25. 25.
    Motorina, A., Tananaiko, O., Kozytska, I., Raks, V., Badía, R., Díaz-Garcia, M.E., and Zaitsev, V.N., Sens. Actuators, B, 2014, vol. 200, no. 1, p. 198.CrossRefGoogle Scholar
  26. 26.
    Parashchenko, I.I., Smirnova, T.D., Shtykov, S.N., Kochubei, V.I., and Zhukova, N.N., J. Anal. Chem., 2013, vol. 68, no. 2, p. 112.CrossRefGoogle Scholar
  27. 27.
    Voronina, R.D. and Zorov, N.B., J. Anal. Chem., 2007, vol. 62, no. 3, p. 206.CrossRefGoogle Scholar
  28. 28.
    Aguilar-Vazquez, L., Aguilar-Caballos, M.P., and Gomez-Hens, A., Talanta, 2014, vol. 119, no. 6, p. 111.CrossRefGoogle Scholar
  29. 29.
    Liu, L., Chen, G., and Fishman, M.L., Anal. Chim. Acta, 2005, vol. 528, no. 1, p. 261.CrossRefGoogle Scholar
  30. 30.
    Ohshima, K., Watanabe, H., and Haraguchi, K., Anal. Sci., 1986, vol. 2, p. 131.CrossRefGoogle Scholar
  31. 31.
    Alekseev, S.A., Zaitsev, V.M., and Fraissard, J., Russ. Shem. Bull., 2003, vol. 52, no. 2, p. 364.CrossRefGoogle Scholar
  32. 32.
    Zaitsev, V.N., Kobylinskaya, N.G., Kostenko, L.S., and Gerda, V.I., J. Anal. Chem., 2008, vol. 63, no. 8, p. 779.CrossRefGoogle Scholar
  33. 33.
    Marczenko, Z., Kolorymetryczne Oznaczanie Pierwiastkow (Colorimetric Determination of Elements), Warszawa: Wysdawnictwa Naukowo-Techniczne, 1968.Google Scholar
  34. 34.
    Nishioka, T., Yuan, J., Yamamoto, Y., Sumitomo, K., Wang, Z., Hashino, K., Hosoya, C., Ikawa, K., Wang, G., and Matsumoto, K., Inorg. Chem., 2006, vol. 45, p. 4088.CrossRefGoogle Scholar
  35. 35.
    Lian, N., Tang, J., He, X., Li, W., and Zhang, G., J. Anal. Chem., 2016, vol. 71, no. 7, p. 653.CrossRefGoogle Scholar
  36. 36.
    Yagodin, G.A., Sinegribova, O.A., and Chekmarev, A.M., Tekhnologiya redkikh metallov v atomnoi tekhnike (Technology of Rare Metals in Nuclear Engineering) Gromov, B.V., Ed., Moscow: Atomizdat, 1974.Google Scholar
  37. 37.
    Rard, J.A., Chem. Rev., 1985, vol. 85, no. 6, p. 555.CrossRefGoogle Scholar
  38. 38.
    Andolina, C.M., Mathews, R.A., and Morrow, J.R., Helv. Chim. Acta, 2009, vol. 92, no. 11, p. 2330.CrossRefGoogle Scholar
  39. 39.
    Şanli, S., Şanli, N., and Alsancak, G.A., J. Braz. Chem. Soc., 2009, vol. 20, no. 5, p. 939.Google Scholar
  40. 40.
    Gu, Ch., Karthikeyan, K.G., Sibley, S.D., and Pedersen, J.A., Chemosphere, 2007, vol. 66, p. 1494.CrossRefGoogle Scholar
  41. 41.
    Tikhomirova, T.I., Smirnov, V.S., and Bystrov, V.Yu., Moscow Univ. Chem. Bull., 2008, vol. 63, no. 5, p. 288.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. A. Goncharova
    • 1
  • N. G. Kobylinska
    • 1
  • M. E. Díaz-Garcia
    • 2
  • V. N. Zaitsev
    • 1
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.University of OviedoOviedoSpain

Personalised recommendations