Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 7, pp 793–802 | Cite as

Modeling of the effect of diffusion processes on the response of ion-selective electrodes by the finite difference technique: Comparison of theory with experiment and critical evaluation

  • V. V. Egorov
  • A. D. Novakovskii
  • E. A. Zdrachek
Articles

Abstract

Experimental data are compared with the results of calculations by the finite difference technique within the dynamic diffusion model of the interphase potential on an example of a picrate-selective electrode in real scenarios corresponding to the conditions of the determination of selectivity coefficients by the methods recommended by IUPAC. It was found that, in the majority of the considered cases, the calculated values of the potential and selectivity coefficients and also the dynamics of potential change at particular steps well agree with the experimental data. The model has principal restrictions, leading the failure of calculations, when the concentration of potential-determining ions in the near-electrode layer of the solution performed is low according to the algorithm of measurements, whereas the instant increase in its concentration in the surface membrane layer due to the replacement of the sample solution induces a flux of these ions from the surface deep into of the membrane.

Keywords

potentiometry ion-selective electrode interphase potential dynamic diffusion model finite difference technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakker, E., Buhlmann, P., and Pretsch, E., Chem. Rev., 1997, vol. 97, no. 8, p. 3083.CrossRefGoogle Scholar
  2. 2.
    Bakker, E., Buhlmann, P., and Pretsch, E., Talanta, 2004, vol. 63, no. 1, p. 3.CrossRefGoogle Scholar
  3. 3.
    Sokalski, T., Ceresa, A., Zwickl, T., and Pretsch, E., J. Am. Chem. Soc., 1997, vol. 119, no. 46, p. 11347.CrossRefGoogle Scholar
  4. 4.
    Bakker, E., Anal. Chem., 1997, vol. 69, p. 1061.CrossRefGoogle Scholar
  5. 5.
    Bakker, E., Pretsch, E., and Buhlmann, P., Anal. Chem., 2000, vol. 72, p. 1127.CrossRefGoogle Scholar
  6. 6.
    Mathison, S. and Bakker, E., Anal. Chem., 1998, vol. 70, p. 303.CrossRefGoogle Scholar
  7. 7.
    Gyurcsanyi, R.E., Pergel, E., Nagy, R., Kapui, J., Lan, B.T.T., Toth, K., Bitter, J., and Lindner, E., Anal. Chem., 2001, vol. 73, p. 2104.CrossRefGoogle Scholar
  8. 8.
    Szigeti, Z., Vigassy, T., Bakker, E., and Pretsch, E., Electroanalysis, 2006, vol. 18, p. 1254.CrossRefGoogle Scholar
  9. 9.
    Radu, A., Peper, S., Bakker, E., and Diamond, D., Electroanalysis, 2007, vol. 19, p. 144.CrossRefGoogle Scholar
  10. 10.
    Mikhelson, K.N. and Peshkova, M.A., Russ. Chem. Rev., 2015, vol. 84, no. 6, p. 555.CrossRefGoogle Scholar
  11. 11.
    Morf, W.E., The Principles of Ion-Selective Electrodes and of Membrane Transport, New York: Elsevier, 1981.Google Scholar
  12. 12.
    Srinivasan, K. and Rechnitz, G.A., Anal. Chem., 1969, vol. 41, p. 1203.CrossRefGoogle Scholar
  13. 13.
    Hulanicki, A. and Augustowska, Z., Anal. Chim. Acta, 1975, vol. 19, p. 623.Google Scholar
  14. 14.
    Yoshida, N. and Ishibashi, N., Bull. Chem. Soc. Jpn., 1977, vol. 50, p. 3189.CrossRefGoogle Scholar
  15. 15.
    Zdrachek, E.A., Nazarov, V.A., and Egorov, V.V., Vestn. Beloruss. Gos. Univ., Ser. 2, 2014, no. 1, p. 10.Google Scholar
  16. 16.
    Zdrachek, E.A., Nazarov, V.A., and Egorov, V.V., Electroanalysis, 2015, vol. 27, p. 693.CrossRefGoogle Scholar
  17. 17.
    Egorov, V.V., Zdrachek, E.A., and Nazarov, V.A., J. Anal. Chem., 2014, vol. 69, no. 6, p. 535.CrossRefGoogle Scholar
  18. 18.
    Egorov, V.V., Zdrachek, E.A., and Nazarov, V.A., Anal. Chem., 2014, vol. 86, p. 3693.CrossRefGoogle Scholar
  19. 19.
    Radu, A., Meir, A.J., and Bakker, E., Anal. Chem., 2004, vol. 76, p. 6402.CrossRefGoogle Scholar
  20. 20.
    Morf, W.E., Pretsch, E., and Rooij, N.F., J. Electroanal. Chem., 2007, vol. 602, p. 43.CrossRefGoogle Scholar
  21. 21.
    Bakker, E., Anal. Chem., 2014, vol. 86, p. 8021.CrossRefGoogle Scholar
  22. 22.
    Sokalski, T. and Lewenstam, A., Electrochem. Commun., 2001, vol. 3, p. 472.CrossRefGoogle Scholar
  23. 23.
    Jasielec, J.J., Sokalski, T., Filipek, R., and Lewenstam, A., Electrochim. Acta, 2010, vol. 55, p. 6836.CrossRefGoogle Scholar
  24. 24.
    Szyszkiewicz, K., Danielewki, M., Fausek, J., Jasielec, J.J., Kucza, W., Lewenstam, A., Sokalski, T., and Filipek, R., ECS Trans., 2014, vol. 61, no. 15, p. 21.CrossRefGoogle Scholar
  25. 25.
    Jasielec, J.J., Sokalski, T., Filipek, R., and Lewenstam, A., Anal. Chem., 2015, vol. 87, no. 17, p. 8665.CrossRefGoogle Scholar
  26. 26.
    Guilbault, G.G., Durst, R.A., Frant, M.S., Freiser, H., Hansen, E.H., Light, T.S., Pungor, E., Rechnitz, G., Rice, N.M., Rohm, T.J., Simon, W., and Thomas, J.D.R., Pure Appl. Chem., 1976, vol. 66, p. 127.Google Scholar
  27. 27.
    Buck, R.P. and Lindner, E., Pure Appl. Chem., 1995, vol. 66, p. 2527.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Egorov
    • 1
  • A. D. Novakovskii
    • 2
  • E. A. Zdrachek
    • 2
  1. 1.Chemical FacultyBelarusian State UniversityMinskBelarus
  2. 2.Research Institute of Physical and Chemical ProblemsBelarusian State UniversityMinskBelarus

Personalised recommendations