Advertisement

Journal of Analytical Chemistry

, Volume 72, Issue 7, pp 783–792 | Cite as

Voltammetric determination of paracetamol at NiO nanoparticles-modified carbon paste electrode in bulk and tablet dosage forms

  • Ali Naeemy
  • Ali Mohammadi
  • Navid Assi
Articles

Abstract

Nickel oxide (NiO) nanoparticles were synthesized by a rapid method and well characterized. The nanoparticles were then used with graphite powder to prepare modified carbon paste electrode (CPE/NiO) for electrocatalytic oxidation of paracetamol (AC). The CPE/NiO showed higher electrocatalytic activity than nickel rod electrode in electrocatalytic oxidation of AC in alkaline media. The assay of AC, mechanism and kinetics of the electrooxidation process were investigated by cyclic voltammetry and chronoamperometry. The catalytic rate constant and the charge transfer coefficient of AC electrooxidation by the active nickel species and the diffusion coefficient of AC were also reported. The linear dependence of the peak current on the concentration of the AC was observed in the range 2–14 mM. This procedure was successfully applied to the determination of AC in tablets. The results showed sufficient precision, accuracy and achieved a mean recovery of 97.2% (RSD = 6.7%).

Keywords

paracetamol electrocatalytic oxidation carbon paste electrode NiO nanoparticles voltammetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mohammadi, A., Moghaddam, A.B., Kazemzad, M., Dinarvand, R., and Badraghi, J., Mater. Sci. Eng., C, 2009, vol. 29, p. 1752.CrossRefGoogle Scholar
  2. 2.
    Mohammadi, A., Moghaddam, A.B., and Badraghi, J., Anal. Methods, 2012, vol. 4, p. 1024.CrossRefGoogle Scholar
  3. 3.
    Wang, X., Li, X., Sun, X., Li, F., Liu, Q., Wang, Q., and He, D., J. Mater. Chem., 2011, vol. 21, p. 3571.CrossRefGoogle Scholar
  4. 4.
    Wang, X., Yang, Z., Sun, X., Li, X., Wang, D., Wang, P., and He, D., J. Mater. Chem., 2011, vol. 21, p. 9988.CrossRefGoogle Scholar
  5. 5.
    Hotovy, I., Huran, J., Spiess, L., Hascik, S., and Rehacek, V., Sens. Actuators, B, 1999, vol. 57, p. 147.CrossRefGoogle Scholar
  6. 6.
    Yoshimura, K., Miki, T., and Tanemura, S., Jpn. J. Appl. Phys., 1995, vol. 34, p. 2440.CrossRefGoogle Scholar
  7. 7.
    Niklasson, G.A. and Granqvist, C.G., J. Mater. Chem., 2007, vol. 17, p. 127.CrossRefGoogle Scholar
  8. 8.
    Kim, S.-G., Yoon, S.P., Han, J., Nam, S.W., Lim, T.H., Oh, I.-H., and Hong, S.-A., Electrochim. Acta, 2004, vol. 49, p. 3081.CrossRefGoogle Scholar
  9. 9.
    Zhang, M., Yan, G., Hou, Y., and Wang, C., J. Solid State Chem., 2009, vol. 182, p. 1206.CrossRefGoogle Scholar
  10. 10.
    Brayfield, A., Martindale: The Complete Drug Reference, Pharmaceutical Press, 2014, 38th ed.Google Scholar
  11. 11.
    Textbook of Clinical Chemistry, Tietz, N.W. and Andresen, B.D., Eds., Philadelphia: Saunders, 1986.Google Scholar
  12. 12.
    Nagasawa, H.T., Shoeman, D.W., Cohen, J.F., and Rathbun, W.B., J. Biochem. Toxicol., 1996, vol. 11, p. 289.CrossRefGoogle Scholar
  13. 13.
    Remington, J.P., Troy, D.B., and Beringer, P., Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins, 2006.Google Scholar
  14. 14.
    Zhan, Y., Zhang, Y., Li, Q., and Du, X., J. Anal. Chem., 2011, vol. 66, p. 215.CrossRefGoogle Scholar
  15. 15.
    Bouhsain, Z., Garrigues, S., and de la Guardia, M., Fresenius’ J. Anal. Chem., 1997, vol. 357, p. 973.CrossRefGoogle Scholar
  16. 16.
    Cekic, S., Filik, H., and Apak, R., J. Anal. Chem., 2005, vol. 60, p. 1019.CrossRefGoogle Scholar
  17. 17.
    Shi, G., Xu, F., Xue, J., and Jin, L., Electroanalysis, 1999, vol. 11, p. 432.CrossRefGoogle Scholar
  18. 18.
    Ravisankar, S., Vasudevan, M., Gandhimathi, M., and Suresh, B., Talanta, 1998, vol. 46, p. 1577.CrossRefGoogle Scholar
  19. 19.
    Zenkevich, I. and Kosman, V., J. Anal. Chem., 2001, vol. 56, p. 263.CrossRefGoogle Scholar
  20. 20.
    He, F., Liu, A., and Xia, X., Anal. Bioanal. Chem., 2004, vol. 379, p. 1062.CrossRefGoogle Scholar
  21. 21.
    Kunkel, A., Günter, S., and Wätzig, H., J. Chromatogr. A, 1997, vol. 768, p. 125.CrossRefGoogle Scholar
  22. 22.
    Lavorante, A.F., Pires, C.K., and Reis, B.F., J. Pharm. Biomed. Anal., 2006, vol. 42, p. 423.CrossRefGoogle Scholar
  23. 23.
    Valero, E., Carrión, P., Varón, R., and García-Carmona, F., Anal. Biochem., 2003, vol. 318, p. 187.CrossRefGoogle Scholar
  24. 24.
    Moghaddam, A.B., Mohammadi, A., Mohammadi, S., Rayeji, D., Dinarvand, R., Baghi, M., and Walker, R.B., Microchim. Acta, 2010, vol. 171, p. 377.CrossRefGoogle Scholar
  25. 25.
    Naeemy, A., Mohammadi, A., Bakhtiari, H., Ashouri, N., and Walker, R.B., Micro Nano Lett., 2014, vol. 9, p. 691.CrossRefGoogle Scholar
  26. 26.
    Boopathi, M., Won, M.-S., and Shim, Y.-B., Anal. Chim. Acta, 2004, vol. 512, p. 191.CrossRefGoogle Scholar
  27. 27.
    Murray, R.W., Acc. Chem. Res., 1980, vol. 13, p. 135.CrossRefGoogle Scholar
  28. 28.
    Shaidarova, L. and Budnikov, G., J. Anal. Chem., 2008, vol. 63, p. 922.CrossRefGoogle Scholar
  29. 29.
    Budnikov, G.K., Evtyugin, G.A., Budnikova, Y.G., and Al’fonsov, V.A., J. Anal. Chem., 2008, vol. 63, p. 2.CrossRefGoogle Scholar
  30. 30.
    Kazemipour, M., Ansari, M., Mohammadi, A., Beitollahi, H., and Ahmadi, R., J. Anal. Chem., 2009, vol. 64, p. 65.CrossRefGoogle Scholar
  31. 31.
    Feizbakhsh, A., Aghassi, A., Ehsani, A., Jamaat, M.A., Naeemy, A., and Danaee, I., J. Chin. Chem. Soc., 2012, vol. 59, p. 1086.CrossRefGoogle Scholar
  32. 32.
    Ehsani, A., Mahjani, M., Jafarian, M., and Naeemy, A., Electrochim. Acta, 2012, vol. 71, p. 128.CrossRefGoogle Scholar
  33. 33.
    Jafarian, M., Mahjani, M., Heli, H., Gobal, F., and Heydarpoor, M., Electrochem. Commun., 2003, vol. 5, p. 184.CrossRefGoogle Scholar
  34. 34.
    Danaee, I., Jafarian, M., Forouzandeh, F., Gobal, F., and Mahjani, M., Int. J. Hydrogen Energy, 2008, vol. 33, p. 4367.CrossRefGoogle Scholar
  35. 35.
    Wohlfahrt-Mehrens, M., Oesten, R., Wilde, P., and Huggins, R., Solid State Ionics, 1996, vol. 86, p. 841.CrossRefGoogle Scholar
  36. 36.
    El-Shafei, A., J. Electroanal. Chem., 1999, vol. 471, p. 89.CrossRefGoogle Scholar
  37. 37.
    Patterson, A., Phys. Rev., 1939, vol. 56, p. 978.CrossRefGoogle Scholar
  38. 38.
    Klug, H.P. and Alexander, L.E., X-Ray Diffraction Procedures, New York: Wiley, 1988.Google Scholar
  39. 39.
    Thota, S. and Kumar, J., J. Phys. Chem. Solids, 2007, vol. 68, p. 1951.CrossRefGoogle Scholar
  40. 40.
    Allen, J.B. and Larry, R.F., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.Google Scholar
  41. 41.
    Miller, J.C. and Miller, J.N., Statistics for Analytical Chemistry, New York: Wiley, 1988.Google Scholar
  42. 42.
    Wang, S.-F., Xie, F., and Hu, R.-F., Sens. Actuators, B, 2007, vol. 123, p. 495.CrossRefGoogle Scholar
  43. 43.
    Vidyadharan, A.K., Jayan, D., and Nancy, T.M., J. Solid State Electrochem., 2014, vol. 18, p. 2513.CrossRefGoogle Scholar
  44. 44.
    Ghoreishi, S.M., Behpour, M., Hajisadeghian, E., and Golestaneh, M., J. Chil. Chem. Soc., 2013, vol. 58, p. 1513.CrossRefGoogle Scholar
  45. 45.
    United States Pharmacopoeia 38, Rockville: The United States Pharmacopoeia Convention, 2015.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Drug and Food Control, Faculty of PharmacyTehran University of Medical SciencesTehranIran
  2. 2.Pharmaceutical Quality Assurance Research Center, Faculty of PharmacyTehran University of Medical SciencesTehranIran
  3. 3.Nanotechnology Research Centre, Faculty of PharmacyTehran University of Medical SciencesTehranIran

Personalised recommendations