Journal of Analytical Chemistry

, Volume 72, Issue 3, pp 327–332 | Cite as

Chemical sensors based on a hydrochemically deposited lead sulfide film for the determination of lead in aqueous solutions

  • I. V. Zarubin
  • V. F. Markov
  • L. N. Maskaeva
  • N. V. Zarubina
  • M. V. Kuznetsov


Chemical sensors for determining lead in aqueous solutions are developed based on hydrochemically deposited lead sulfide (PbS) films; their composition and surface morphology are studied. The sensors are sensitive to lead to 31.5–32.5 mV/pc Pb with the limit of detection of the metal 1.5 × 10–8 M. The role of photoactivation and doping of films in increasing the sensitivity of the film sensor to lead is determined. The studied chemical sensors can be relatively easily regenerated by soaking in distilled water for 10–30 min; they have sufficiently high selectivity to lead in the presence of sodium, nickel, zinc, and cadmium salts in solution.


chemical sensors thin film lead sulfide hydrochemical deposition determination of lead in aqueous solutions selectivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vlasov, Yu., Legin, A., and Rudnitskaya, A., Sens. Actuators, B, 1997, vol. 44, p. 532.CrossRefGoogle Scholar
  2. 2.
    Zakharova, G.S. and Podval’naya, N.V., RF Patent 2470289, Byull. Izobret., 2012, no. 35.Google Scholar
  3. 3.
    Kirsanov, D.O., Legin, A.V., Babain, V.A., Pol’shin, E.N., Rudnitskaya, A.M., Legin, K.A., and Seleznev, B.L., RF Patent 2315988, Byull. Izobret., 2008, no. 3.Google Scholar
  4. 4.
    Dae-Sik, L., Chang-Hyun, S., Jun-Woo, L., Jeung-Soo, H., Duk-Dong, L., and Youn-Tae, K., Sens. Actuators, B, 2002, vol. 83, p. 250.CrossRefGoogle Scholar
  5. 5.
    Mourzina, Yu., Yoshinodu, T., Schubert, J., Luth, H., Iwasaki, H., and Schoning, M.J., Sens. Actuators, B, 2001, vol. 80, p. 136.CrossRefGoogle Scholar
  6. 6.
    Mourzina, Yu., Schoning, M.J., Schubert, J., Zander, W., Legin, A.V., Vlasov, Yu.G., Kordos, P., and Luth, H., Sens. Actuators, B, 2000, vol. 71, p. 13.CrossRefGoogle Scholar
  7. 7.
    Vlasov, Yu.G., Ermolenko, Yu.E., Legin, A.V., and Murzina, Yu.G., J. Anal. Chem., 1999, vol. 54, p. 476.Google Scholar
  8. 8.
    Kloock, J., Mourzina, Yu., Schubert, J., and Schoning, M., Sens. Actuators, B, 2002, vol. 85, p. 79.CrossRefGoogle Scholar
  9. 9.
    Martin, Y.M., Hermandez, Y.L., Adell, L., Rodrigues, A., and Lopez, F., Semicond. Sci. Technol., 1996, vol. 11, p. 1740.CrossRefGoogle Scholar
  10. 10.
    Gardona, M. and Harbeke, G., Phys. Rev. A: At., Mol., Opt. Phys., 1965, vol. 1237, p. 1467.CrossRefGoogle Scholar
  11. 11.
    Ivanov, D., Streltcov, V., and Fedotov, A., Phys. Solid State, 2005, vol. 1, p. 416.Google Scholar
  12. 12.
    Perna, G., Cappozi, V., Pagliara, S., Ambrico, M., and Lojacono, D., Thin Solid Films, 2001, vol. 387, p. 208.CrossRefGoogle Scholar
  13. 13.
    Wu, H., Fang, X., Sales, R., McAlister, D., and McCann, P.J., J. Vac. Sci. Technol., 1999, vol. 17, p. 1263.CrossRefGoogle Scholar
  14. 14.
    Schoning, M., Moursina, Yu., Schubert, J., Zander, W., Legin, A., Vlasov, Yu., and Luth, H., Sens. Actuators, B, 2001, vol. 78, p. 273.CrossRefGoogle Scholar
  15. 15.
    Markov, V.F. and Maskaeva, L.N., J. Anal. Chem., 2001, vol. 56, no. 8, p. 754.CrossRefGoogle Scholar
  16. 16.
    Markov, V.F., Vinogradova, T.V., Zarubin, I.V., and Maskaeva, L.N., Analitika Kontrol’, 2012, vol. 16, no. 4, p. 410.Google Scholar
  17. 17.
    Markov, V.F., Maskaeva, L.N., Zarubin, I.V., and Zamaraeva, N.V., Voda: Khim. Ekol., 2012, no. 6, p. 80.Google Scholar
  18. 18.
    Chen, S. and Liu, W., Mater. Chem. Phys., 2006, vol. 98, p. 183.CrossRefGoogle Scholar
  19. 19.
    Mathews, N.R., Angeles-Chavez, C., Cortes-Jacome, M.A., and Toledo-Antonio, J.A., Electrochim. Acta, 2013, vol. 99, p. 76.CrossRefGoogle Scholar
  20. 20.
    Pawar, S.B., Shaikh, J.S., Devan, R.S., Ma, Y.R., Haranath, D., Bhosale, P.N., and Patil, P.S., Appl. Surf. Sci., 2011, vol. 258, p. 1869.CrossRefGoogle Scholar
  21. 21.
    Jana, S., Thapa, R., Maity, R., and Chattopadhyay, K.K., Phys. E, 2008, vol. 40, p. 3121.CrossRefGoogle Scholar
  22. 22.
    Fernandez-Lima, F.A., Gonzalez-Alfaro, Y., Larramendi, E.M., and Foseca-Filho, H.D., Maia de Costa, M.E.H., Freire, F.L., Jr., Prioli, R., Avillez, R.R., Silveira, E.F., Calzadilla, O., Melo, O., Pedrero, E., and Hernandez, E., Mater. Sci. Eng., B, 2007, vol. 136, p. 187.CrossRefGoogle Scholar
  23. 23.
    Ekoniks. Cited July 27, 2016.Google Scholar
  24. 24.
    Marco, R., Cattral, R., Liesegang, J., and Nymberg, G., Anal. Chem., 1992, vol. 64, p. 594.CrossRefGoogle Scholar
  25. 25.
    Vlasov, Yu., Bychkov, E., and Medvedev, M., Anal. Chim. Acta, 1986, vol. 185, p. 137.CrossRefGoogle Scholar
  26. 26.
    Vlasov, Yu.G., Ermolenko, Yu.E., and Ischakova, O.F., Zh. Anal. Khim., 1979, vol. 34, no. 8, p. 1522Google Scholar
  27. 27.
    Damaskin, B.B., Vvedenie v electrokhimicheskuyu kinetiku (Introduction to Electrochemical Kinetics), Moscow: Vysshaya Shkola, 1983.Google Scholar
  28. 28.
    Promavtomatika. Cited July 27, 2016.Google Scholar
  29. 29.
    SoyuzKhimprom. Cited July 27, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Zarubin
    • 1
  • V. F. Markov
    • 1
    • 2
  • L. N. Maskaeva
    • 1
    • 2
  • N. V. Zarubina
    • 1
  • M. V. Kuznetsov
    • 3
  1. 1.Institute of Chemical TechnologyUral Federal UniversityYekaterinburgRussia
  2. 2.Ural Institute of State Fire-Fighting ServiceMinistry of Emergency Situations of RussiaYekaterinburgRussia
  3. 3.Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations