Journal of Analytical Chemistry

, Volume 72, Issue 3, pp 333–341 | Cite as

Electrocatalytic performance of cobalt microparticles film-modified platinum disk electrode for amperometric detection of ascorbic acid



Deposited cobalt microparticales (Co-MPs) film onto the platinum disk electrode has been successfully used as a new amperometric sensor for the determination of ascorbic acid (AA). AA is detected by surface catalyzed oxidation involving cobalt(III) oxyhydroxides in alkaline solution. The Co-MPs/Pt electrode exhibits a high electrocatalytic activity toward the AA oxidation. The diffusion coefficient of AA (6.09 × 105 cm2/s) and the catalytic rate constant (k cat = 6.27 × 103 M–1s–1) have been determined using electrochemical approaches. The amperometric response of the modified electrode is linear against the AA concentration in the range (0.01‒0.48 mM). The sensor displays the best activity with a high response signal, a good sensitivity of 74.3 μA/mM, a low detection limit of 2.5 μM (signal/noise = 3) and a fast response time (<3 s). Moreover, the reproducibility, selectivity and applicability of this biosensor are satisfactorily evaluated.


cobalt microparticles electrocatalytic activity ascorbic acid oxidation amperometric detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agui, L., Pena-Fartal, C., Yanez-Sedeno, P., and Pingararrom, J.M., Talanta, 2007, vol. 74, p. 412.CrossRefGoogle Scholar
  2. 2.
    Dilgin, Y. and Nisli, G., Chem. Pharm. Bull., 2005, vol. 53, p. 1251.CrossRefGoogle Scholar
  3. 3.
    Farmatsevticheskii analiz lekarstvennykh sredstv (Pharmaceutical Analysis of Pharmaceuticals), Shapovalova, V.A., Ed., Kharkov: Rubikon, 1995.Google Scholar
  4. 4.
    Perez-Ruiz, T., Martinez-Lozano, C., Sanz, A., and Guillen, A., J. Pharm. Biomed. Anal., 2004, vol. 34, p. 551.CrossRefGoogle Scholar
  5. 5.
    Lechien, F., Valenta, P., Nurnberg, H.W., and Patriarche, G.J., Fresenius’ Z. Anal. Chem., 1982, vol. 105, no. 2, p. 311.Google Scholar
  6. 6.
    Kachoosangi, R.T., Banks, C.E., and Compton, R.G., Electroanalysis, 2006, vol. 18, p. 741.CrossRefGoogle Scholar
  7. 7.
    Lin, X. and Li, Y., Electrochim. Acta, 2006, vol. 21, p. 5794.CrossRefGoogle Scholar
  8. 8.
    Chauhan, N., Narang, J., Rawal, R., and Pundir, C.S., Synth. Met., 2011, vol. 161, p. 2427.CrossRefGoogle Scholar
  9. 9.
    Kul, D., Ghica, M.E., Pauliukaite, R., and Brett, C.M.A., Talanta, 2013, vol. 111, p. 76.CrossRefGoogle Scholar
  10. 10.
    Pisoschi, A.M., Pop, A., Serban, A.I., and Fafaneata, C., Electrochim. Acta, 2014, vol. 121, p. 443.CrossRefGoogle Scholar
  11. 11.
    Pournaghi-Azar, M.H. and Ojani, R., J. Solid State Electrochem., 1999, vol. 3, p. 392.CrossRefGoogle Scholar
  12. 12.
    Shaidarova, L.G., Gedmina, A.V., and Budnikov, G.K., Russ. J. Appl. Chem., 2003, vol. 76, no. 5, p. 755.CrossRefGoogle Scholar
  13. 13.
    Shaidarova, L.G., Gedmina, A.V., Chelnokova, I.A., and Budnikov, G.K., J. Anal. Chem., 2006, vol. 61, no. 6, p. 601.CrossRefGoogle Scholar
  14. 14.
    Kalcher, K., Electroanalysis, 1990, vol. 2, p. 419.CrossRefGoogle Scholar
  15. 15.
    Shaidarova, L.G., Gedmina, A.V., Zhaldak, E.R., Chelnokova, I.A., and Budnikov, G.K., J. Anal. Chem., 2014, vol. 69, no. 8, p. 741.CrossRefGoogle Scholar
  16. 16.
    Wei, M.Y., Huang. R., and Guo, L.H., J. Electroanal. Chem., 2012, vol. 664, p. 156.CrossRefGoogle Scholar
  17. 17.
    Rohani, T. and Taher, M.A., Talanta, 2009, vol. 78, p. 743.CrossRefGoogle Scholar
  18. 18.
    Zhang, X., Yu, S., He, W., Uyama, H., Xie, Q., Zhang, Lu., and Yang, F., Biosens. Bioelectron., 2014, vol. 55, p. 446.CrossRefGoogle Scholar
  19. 19.
    Kaura, B., Pandiyanb, T., Satpatic, B., and Srivastava, R., Colloids Surf., B, 2013, vol. 111, p. 97.CrossRefGoogle Scholar
  20. 20.
    Tian, L., Bian, J., Wang, B., and Qi, Y., Electrochim. Acta, 2010, vol. 55, p. 3083.CrossRefGoogle Scholar
  21. 21.
    Fan, L.F., Wu, X.Q., Guo, M.D., and Gao, Y.T., Electrochim. Acta, 2007, vol. 52, p. 3654.CrossRefGoogle Scholar
  22. 22.
    Song, Y., He, Z., Zhu, H., Hou, H., and Wang, L., Electrochim. Acta, 2011, vol. 58, p. 757.CrossRefGoogle Scholar
  23. 23.
    Spataru, T., Osiceanu, P., Munteanu, C., Spataru, N., and Fujishima, A., J. Solid State Electrochem., 2012, vol. 16, p. 3897.CrossRefGoogle Scholar
  24. 24.
    Ojani, R., Raoof, J.-B., and Norouzi, B., J. Solid State Electrochem., 2011, vol. 15, p. 1139.CrossRefGoogle Scholar
  25. 25.
    Yang, F., Wang, J., Cao, Y., Zhang, Lu., and Zhang, X., Sens. Actuators, B, 2014, vol. 205, p. 20.CrossRefGoogle Scholar
  26. 26.
    Shaidarova, L.G., Ziganshina, S.A., Medyantseva, E.P., and Budnikov, G.K., Russ. J. Appl. Chem., 2004, vol. 77, no. 2, p. 241.CrossRefGoogle Scholar
  27. 27.
    Shaidarova, L.G., Gedmina, A.V., and Budnikov, G.K., J. Anal. Chem., 2003, vol. 58, no. 2, p. 171.CrossRefGoogle Scholar
  28. 28.
    Laviron, E., J. Electroanal. Chem., 1979, vol. 101, no. 1, p. 19.CrossRefGoogle Scholar
  29. 29.
    Budnikov, G.K., Printsipy i primenenie vol’tampernoi ostsillograficheskoi polyarografii (Principles and Use of Voltammetric Oscillographic Polarography), Kazan: Kazansk. Gos. Univ., 1975.Google Scholar
  30. 30.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2000.Google Scholar
  31. 31.
    Kutner, W., Wang, J., L’her, M., and Buck, R.P., Pure Appl. Chem., 1998, vol. 70, p. 1301.CrossRefGoogle Scholar
  32. 32.
    Alireza, M. and Mohammad, A.T., Sens. Actuators, B, 2007, vol. 123, p. 733.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Merzak Doulache
    • 1
    • 2
  • Boubakeur Saidat
    • 1
  • Mohamed Trari
    • 2
  1. 1.Laboratory of Physical Chemistry of Materials (LPCM)University Amar Telidji of LaghouatLaghouatAlgeria
  2. 2.Laboratory of Storage and Valorization of Renewable Energies (LSVRE)Faculty of Chemistry (USTHB)AlgiersAlgeria

Personalised recommendations