Enhanced Photoelectrocatalytic Degradation Activity of Titanium Dioxide Photoelectrode: Effect of Film Thickness

Abstract

The present work reports synthesis of titanium dioxide (TiO2) thin films deposited from ethanolic titanium diisopropoxide bis-acetyl acetonate precursor solution by using spray pyrolysis technique. The deposition of films were carried out on both amorphous and fluorine doped tin oxide (F:SnO2) glasses. The effect of film thickness on photoelectrochemical, structural, morphological and optical properties of TiO2 thin films was studied. The photoelectrochemical performance showed highest short circuit current and open circuit voltage at the optimized thickness of the film of 0.921 μm. X-ray diffraction study revealed that the films are polycrystalline, and exhibit anatase phase having tetragonal crystal structure. The TiO2 electrodes deposited on fluorine-doped substrates were further used in the photoelectrochemical degradation of pollutants such as Methylene blue dye and benzoic acid. The degradation efficiencies were found to be 76 and 55% for the dye and benzoic acid, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Kusmierek E., Catalysts, 2020, vol. 10, p. 439.

    CAS  Article  Google Scholar 

  2. 2

    Sampath, C., Ranasinghe, K., Vequizo, J.J.M., and Yamakata, A., J. Photochem. Photobiol. A, 2018, vol. 358, p. 320.

    Article  Google Scholar 

  3. 3

    Grätzel, M., Nature, 2001, vol. 414, p. 338.

    PubMed  Google Scholar 

  4. 4

    Linsebigler, A.L., Lu, G., and Yates, J.T., Chem. Rev., 1995, vol. 95, p. 735.

    CAS  Article  Google Scholar 

  5. 5

    Chen, X. and Mao, S.S., Chem. Rev., 2007, vol. 107, p. 2891.

    CAS  Article  Google Scholar 

  6. 6

    Bai, H., Liu, Z., and Sun, D.D., J. Mater. Chem., 2012, vol. 22, p. 24552.

    CAS  Article  Google Scholar 

  7. 7

    Ma Y., Wang X., Jia Y., Chen X., Han H., and Can Li C., Chem. Rev., 2014, vol. 114, p. 9987.

    CAS  Article  Google Scholar 

  8. 8

    Okuya, M., Nakade, K., and Kaneko, S., Sol. Energy Mater. Sol. Cells, 2002, vol. 70, p. 425.

    CAS  Article  Google Scholar 

  9. 9

    Tada, H. and Tanaka, M., Langmuir, 1997, vol. 13, p. 360.

    CAS  Article  Google Scholar 

  10. 10

    Regonini, D., Alves, A.K., Berutti, F.A., and Clemens, F., Int. J. Photoenergy, 2014, vol. 2014, 472539.

    Article  Google Scholar 

  11. 11

    Jung, S.C., Kim, S.J., Imaishi, N., and Cho, Y.I., Appl. Catalysis B, 2005, vol. 55, p. 253.

    CAS  Article  Google Scholar 

  12. 12

    Xianyu, W.X., Park, M.K., and Lee, W.I., Korean J. Chem. Eng., 2001, vol. 18, p. 903.

    CAS  Article  Google Scholar 

  13. 13

    Wang, D., Liu, J., Huo, Q., Nie, Z., Lu, W., Williford, R.E., and Jiang, Y.-B., J. Am. Chem. Soc., 2006, vol. 128, p. 13670.

    CAS  Article  Google Scholar 

  14. 14

    Ayouchi, R., Casteleiro, C., Schwarz, R., and Barrado, J.R., Phys. Status Solidi C, 2010, vol. 7, p. 933.

    CAS  Article  Google Scholar 

  15. 15

    Choi, H., Stathatos, E., and Dionysiou, D.D., Thin Solid Films, 2006, vol. 510, p. 107.

    CAS  Article  Google Scholar 

  16. 16

    Sapkal, R.T., Shinde S.S., Waghmode T.R., Govindwar S.P., Rajpure K.Y., and Bhosale C.H., J. Photochem. Photobiol. B, 2012, vol. 110, p. 15.

    CAS  Article  Google Scholar 

  17. 17

    Mohite, V.S., Mahadik, M.A., Kumbhar, S.S., Kothavale, V.P., Moholkar, A.V., Rajpure, K.Y., and Bhosale, C.H., Ceram. Int., 2014, vol. 41, p. 2202.

    Article  Google Scholar 

  18. 18

    Suryavanshi, R.D., Mohite, S.V., Bagade, A.A., Shaikh, S.K., Thorat, J.B., and Rajpure, K.Y., Mater. Res. Bull., 2018, vol. 101, p. 324.

    CAS  Article  Google Scholar 

  19. 19

    Duminica, F.D., Maury, F., and Abisset, S., Thin Solid Films, 2013, vol. 515, p. 7732.

    Article  Google Scholar 

  20. 20

    Kibasomba, P.M., Dhlamini, S., Maaza, M., Liu, C.P., Rashad, M.M., Rayan, D.A., and Mwakikunga, B.W., Results Phys., 2018, vol. 9, p. 628.

    Article  Google Scholar 

  21. 21

    Shinde, P.S., Patil, P.S., Bhosale, P.N., and Bhosale, C.H., J. Am. Ceram. Soc., 2008, vol. 91, p. 1266.

    CAS  Article  Google Scholar 

  22. 22

    Maulidiyah, M., Wijawan, I.B.P., Wibowo, D., Aladin, A., Hamzah, B., and Nurdin, M., IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 367, 012060.

  23. 23

    Haro, M., Abargues, R., Herraiz-Cardona, I., Martínez-Pastor, J., and Giménez, S., Electrochim. Acta, 2014, vol. 144, p. 64.

    CAS  Article  Google Scholar 

  24. 24

    Yen, Y.C., Chen, J.A., Ou, S., Chen, Y.S., and Lin, K.J., Sci. Rep., 2017, vol. 7, 42 524.

    Article  Google Scholar 

  25. 25

    Wang, G.,Yang, Y., Ling, Y., Wang, H., Lu, X., Pu, Y.C., Zhang, J.Z., Tong, Y., and Li, Y., J. Mater. Chem. A, 2016, vol. 4, p. 2849.

    CAS  Article  Google Scholar 

  26. 26

    Feng, D., Luo, W., Zhang, J., Xu, M., Zhang, R., Wu, H., Lv, Y., Asiri, A.M., Khan, S.B., Rahman, M.M., Zheng, G., and Zhao, D., J. Mater. Chem. A, 2013, vol. 1, p. 1591.

    CAS  Article  Google Scholar 

  27. 27

    Rahman, M.Y.A., Umar, A.A., Roza, L., and Salleh, M.M., J. Exp. Nanosci., 2015, vol. 10, p. 925.

    CAS  Article  Google Scholar 

  28. 28

    Pu, Y.C., Wang, G., Chang, K.D., Ling, Y., Lin, Y.K., Fitzmorris, B.C., Liu, C.M., Lu, X., Tong, Y., Zhang J.Z., Hsu, Y.J., and Li, Y., Nano Lett., 2013, vol. 13, p. 3817.

    CAS  Article  Google Scholar 

  29. 29

    Ezema, C.G., Nwanya, A.C., Ezema, B.E., Patil, B.H., and Bulakhe, R.N., Ukoha P.O., Lokhande, C.D., Maaza, M., and Ezema, F.I., Appl. Phys. A, 2016, vol. 122, 435.

    Article  Google Scholar 

  30. 30

    Yang, Y., Xu, L., Wang, H., Wang, W., and Zhang, L., Mater. Des. J., 2016, vol. 108, p. 632.

    CAS  Article  Google Scholar 

  31. 31

    Balachandran, U. and Eror, N.G., J. Solid State Chem., 1982, vol. 42, p. 276.

    CAS  Article  Google Scholar 

  32. 32

    Stagi, L., Carbonaro, C.M., Corpino, R., Chiriu, D., and Ricci, P.C., Phys. Status Solidi B., 2015, vol. 252, p. 124.

    CAS  Article  Google Scholar 

  33. 33

    Salis, M., Ricci, P.C., and Anedda, A., J. Raman Spectrosc., 2009, vol. 40, p. 64.

    CAS  Article  Google Scholar 

  34. 34

    Sajan, C.P., Wageh, S., Al-Ghamdi, A.A., and Yu, J., Nano Res., 2016, vol. 9, p. 3.

    CAS  Article  Google Scholar 

  35. 35

    Manikandan, A.S. and Renukadevi, K.B., Mater. Res. Bull., 2017, vol. 94, p. 85.

    CAS  Article  Google Scholar 

  36. 36

    Mahadik, M.A., Shinde, S.S., Pathan, H.M., Rajpure, K.Y., and Bhosale, C.H., J. Photochem. Photobiol. B, 2014, vol. 141, p. 315.

    CAS  Article  Google Scholar 

  37. 37

    Shinde, S.S., Bhosale, C.H., and Rajpure, K.Y., Catal. Rev. Sci. Eng., 2013, vol. 55, p. 79.

    CAS  Article  Google Scholar 

  38. 38

    Mohite, V.S., Mahadik, M.A., Kumbhar, S.S., Hunge, Y.M., Kim, J.H., Moholkar, A.V., Rajpure K.Y., and Bhosale, C.H., J. Photochem. Photobiol. B, 2014, vol. 142, p. 204.

    Article  Google Scholar 

  39. 39

    Mahadik, M.A., Shinde, S.S., Mohite, V.S., Kumbhar, S.S., Rajpure, K.Y., Moholkar, A.V., and Bhosale, C.H., Ceram. Int., 2014, vol. 40, p. 9463.

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support received from Chhatrapati Shahu Maharaj Research Training and Human Development Institute (SARTHI), Pune (Government of Maharashtra) for the Chhatrapati Shahu Maharaj Senior Research Fellowship-(CMSRF) 2019, DST PURSE Phase-II (2018–2022) and UGC DSA Phase-II (2018–2023).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Y. Rajpure.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narewadikar, N.A., Suryavanshi, R.D. & Rajpure, K.Y. Enhanced Photoelectrocatalytic Degradation Activity of Titanium Dioxide Photoelectrode: Effect of Film Thickness. Colloid J 83, 107–115 (2021). https://doi.org/10.1134/S1061933X21010099

Download citation