Thermodynamic Study of Solubilization of Crown-Substituted Magnesium Phthalocyaninate in Aqueous Solutions of Sodium Dodecyl Sulfate

Abstract

A spectrophotometric study of the solubilization of crown-substituted magnesium phthalocyaninate (I) has been carried out in an aqueous solution of sodium dodecyl sulfate (II). The experiments have been performed with saturated solutions of I at a thermodynamic equilibrium of a solution with a precipitate of I. The known transition from dimers of I to monomers upon solubilization has been studied in detail. It has been found that monomerization of I begins at concentrations much lower than the critical micelle concentration (CMC) of II, while specific micelles of II are formed with involvement of I dimers at still lower surfactant concentrations. The presence of dimers is also observed when I is dissolved in pure water; the solubility of I has appeared to be 7.38 μM (chemists usually suppose I to be insoluble in water). Extinction coefficients of monomers and dimers of I have been determined in the methodological part of the work. The following thermodynamic characteristics of solubilization have been found on the basis of experimental data: solubilization capacity of micelles, coefficient of solubilizate partition between micelles and an ambient solution, and the standard solubilization affinity of I. The found value of the solubilization capacity as calculated per one molecule of I in a micelle leads to an abnormally large aggregation number (309). One explanation of this fact is the possible development of a bimodal distribution of micelles, at which solubilisate-containing micelles coexist with “empty” micelles; as a result, the average number of solubilizate molecules in a micelle can appear to be smaller than unity.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Goldshleger, N.F., Chernyak, A.V., Kalashnikova, I.P., Baulin, V.E., and Tsivadze, A.Yu., Russ. J. Gen. Chem., 2012, vol. 82, pp. 927–935.

    CAS  Article  Google Scholar 

  2. 2

    Gol'dshleger, N.F., Lobach, A.S., Gak, V.Yu., Kalashnikova, I.P., Baulin, V.E., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 599.

    CAS  Article  Google Scholar 

  3. 3

    Goldshleger, N.F., Chernyak, A.V., Lobach, A.S., Kalashnikova, I.P., Baulin, V.E., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 212.

    CAS  Article  Google Scholar 

  4. 4

    Goldshleger, N.F., Gak, V.Yu., Kalashnikova, I.P., Baulin, V.E., Ivanchikhina, A.V., Smirnov, V.A., Shiryaev, A.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 1092.

    CAS  Article  Google Scholar 

  5. 5

    Goldshleger, N.F., Kalashnikova, I.P., Gorbunova, Yu.G., Martynov, A.G., Baulin, V.E., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 33.

    CAS  Article  Google Scholar 

  6. 6

    Gol'dshleger, N.F., Gak, V.Yu., Lapshina, M.A., Baulin, V.E., Shiryaev, A.A., and Tsivadze, A.Yu., Russ. Chem. Bull., 2018, vol. 67, p. 2205.

    CAS  Article  Google Scholar 

  7. 7

    Movchan, T.G., Averin, A.A., Baulin, D.V., Plotnikova, E.V., Baulin, V.E., and Tsivadze, A.Yu., Colloid J., 2018, vol. 80, p. 501.

    CAS  Article  Google Scholar 

  8. 8

    Movchan, T.G., Chernyad’ev, A.Yu., Plotnikova, E.V., Averin, A.A., Tsivadze, A.Yu., and Baulin, V.E., Colloid J., 2018, vol. 80, p. 667.

    CAS  Article  Google Scholar 

  9. 9

    Movchan, T.G., Chernyad’ev, A.Yu., Plotnikova, E.V., Tsivadze, A.Yu., and Baulin, V.E., Colloid J., 2019, vol. 81, p. 711.

    CAS  Article  Google Scholar 

  10. 10

    Movchan, T.G., Chernyad’ev, A.Yu., Plotnikova, E.V., Tsivadze, A.Yu., and Baulin, V.E., Colloid J., 2020, vol. 82, p. 16.

    CAS  Article  Google Scholar 

  11. 11

    Rusanov, A.I., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micelle Formation in Surfactant Solutions), St. Petersburg: Khimiya, 1992, 2nd ed.

  12. 12

    Rusanov, A.I., in Micellization in Surfactant Solutions. Chemistry Reviews, Vol’pin, M.E., Ed., Reading, MA: Harwood Acad. Publ., 1996, vol. 22, part 1.

    Google Scholar 

  13. 13

    Rusanov, A.I., Shchekin, A.K., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micelle Formation in Surfactant Solutions), St. Petersburg: Lan’, 2016, 2nd ed.

  14. 14

    Rusanov, A.I., Langmuir, 2014, vol. 30, p. 14 443.

    Article  Google Scholar 

  15. 15

    Rusanov, A.I., Colloid J., 2016, vol. 78, p. 371.

    CAS  Article  Google Scholar 

  16. 16

    Rusanov, A.I., Colloid J., 2016, vol. 78, p. 669.

    CAS  Article  Google Scholar 

  17. 17

    Rusanov, A.I., Colloid J., 2020, vol. 82, p. 414.

    CAS  Article  Google Scholar 

  18. 18

    Rusanov, A.I., Colloid J., 2020, vol. 82, p. 560.

    CAS  Article  Google Scholar 

  19. 19

    Shinoda, K. and Hutchinson, E., J. Phys. Chem., 1962, vol. 66, p. 577.

    CAS  Article  Google Scholar 

  20. 20

    Zadymova, N.M. and Ivanova, N.I., Colloid J., 2013, vol. 75, p. 159.

    CAS  Article  Google Scholar 

  21. 21

    Naumova, K.A., Dement’eva, O.V., Zaitseva, A.V., and Rudoy, V.M., Colloid J., 2019, vol. 81, p. 416.

    CAS  Article  Google Scholar 

  22. 22

    Rusanov, A.I., Colloid J., 2021, vol. 83, p. 127.

  23. 23

    Ovsyannikova, E.V., Shiryaev, A.A., Kalashnikova, I.P., Baulin, V.E., Tsivadze, A.Yu., Andreev, V.N., and Alpatova, N.M., Makrogeterotsikly, 2013, vol. 6, p. 274.

    Google Scholar 

  24. 24

    Bıyıklıoğlu, Z., Çakır, V., Çakır, D., and Kantekin, H., J. Organomet. Chem., 2014, vol. 749, p. 18.

    Article  Google Scholar 

  25. 25

    Kushnazarova, R.A., Bekmukhametova, A.M., Gainanova, G.A., Mirgorodskaya, A.B., and Zakharova, L.Ya., Struktura i dinamika molekulyarnykh sistem (Structure and Dynamics of Molecular Systems), Moscow: IFKhE RAN, 2016, no. 23, p. 307.

  26. 26

    Mirgorodskaya, A.B., Kushnazarova, R.A., Bekmukhametova, A.M., Gainanova, G.A., and Zakharova, L.Ya., Vestn. Tekhnol. Univ., 2016, vol. 19, p. 8.

    CAS  Google Scholar 

  27. 27

    Tsivadze, A.Yu., Usp. Khim., 2004, vol. 73, p. 6.

    Google Scholar 

  28. 28

    Venkataraman, K., Khimiya sinteticheskikh krasitelei (Chemistry of Synthetic Dyes), Leningrad: Goskhimizdat, 1957, vol. 2, p. 1279.

    Google Scholar 

  29. 29

    Ovsyannikova, E.V., Gol’dshleger, N.F., Kurochkina, N.M., Baulin, V.E., Tsivadze, A.Yu., and, Alpatova, N.M., Makrogeterotsikly, 2010, vol. 3, p. 125.

    CAS  Google Scholar 

  30. 30

    Tanford, Ch., The Hydrophobic Effect: Formation of Micelles and Biological Membranes, New York: Wiley, 1973, vol. 3, p. 125.

    Google Scholar 

  31. 31

    Jadhao, M., Mukherjee, S., Joshi, R., Kumar, H., and Ghosh, S.K., RSC Adv., 2016, vol. 6, p. 77 161.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.Е. Baulin for kindly supplied magnesium phthalocyaninate.

Funding

The work was carried out within the state order of the Ministry of Science and Higher Education of the Russian Federation (Registration no. NIOKTR АААА-А19-119031490082-6) and supported by the Russian Foundation for Basic Research (project no. 20-03-00641).

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. G. Movchan.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Movchan, T.G., Rusanov, A.I. & Plotnikova, E.V. Thermodynamic Study of Solubilization of Crown-Substituted Magnesium Phthalocyaninate in Aqueous Solutions of Sodium Dodecyl Sulfate. Colloid J 83, 97–106 (2021). https://doi.org/10.1134/S1061933X21010087

Download citation