Advertisement

Colloid Journal

, Volume 80, Issue 2, pp 158–166 | Cite as

Tween 85 Oil-in-Water Nanoemulsions with Incorporated Chlorhexidine Base

  • N. M. Zadymova
  • M. Tao
  • M. V. Poteshnova
Article
  • 10 Downloads

Abstract

The properties of oil-in-water nanoemulsions (NEs) that are stable for a long time (more than a month), which contain a non-micelle-forming surfactant, Tween 85 (Tw, polyoxyethylene(20) sorbitan trioleate), as a dispersed phase, with and without incorporated chlorhexidine (CH) base, have been studied by dynamic light scattering, UV spectroscopy, and potentiometry. It has been shown that the concentration of the dispersed phase in a range of 1–5 wt % has almost no effect on the differential curves of the particle-size distribution, electrokinetic potential of the particles, and dispersion-medium pH values. A linear dependence of the solubility (solubilization) of chlorhexidine base on Tw concentration has been found. The solubilization capacity of the NEs with respect to CH has been determined. The occurrence of intense mass transfer of CH with NE particles in an aqueous medium and the antimicrobial activity with respect to Staphylococcus aureus bacterium, which is resistant to some antibiotics, in particular, to methicillin, has been confirmed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balouiri, M., Sadiki, M., and Ibnsouda, S.K., J. Pharm. Anal., 2016, vol. 6, p. 71.CrossRefGoogle Scholar
  2. 2.
    Russel, A.D., Infection, 1986, vol. 14, p. 212.CrossRefGoogle Scholar
  3. 3.
    Hugo, W.B., in Principles and Practice of Disinfection, Preservation and Sterilization, Russell, A.D., Hugo, W.B., and Ayliffe, G.A.E, Eds., Oxford: Blackwell Scientific, 1982, p. 8.Google Scholar
  4. 4.
    Senior, N., J. Soc. Cosmet. Chem., 1973, vol. 24, p. 259.Google Scholar
  5. 5.
    American Hospital Formulary Service Drug Information, McEvoy, G.K., Ed., Bethesda: American Society of Health-System Pharmacists, 2003.Google Scholar
  6. 6.
    Rose, F.L. and Swain, G., J. Chem. Soc., 1956, p. 4422.Google Scholar
  7. 7.
    Zeng, P., Rao, A., Wiedmann, T.S., and Bowles, W., Drug Dev. Ind. Pharm., 2008, vol. 35, p. 172.CrossRefGoogle Scholar
  8. 8.
    Zeng, P., Zhang, G., Rao, A., Bowles, W., and Wiedmann, T.S., Int. J. Pharm., 2009, vol. 367, p. 73.CrossRefGoogle Scholar
  9. 9.
    Wiedmann, T.S. and Naqwi, A., Asian J. Pharm. Sci., 2016, vol. 11, p. 722.CrossRefGoogle Scholar
  10. 10.
    McDonnell, G., Russell, A.D., Clin. Microbiol. Rev., 1999, vol. 12, p. 147.Google Scholar
  11. 11.
    Graham, W.D., in Disinfection, Sterilization, and Preservation, Block, S.S., Ed., Philadelphia: Lippincott Williams and Wilkins, 2001, p. 321.Google Scholar
  12. 12.
    Sajjan, P., Laxminarayan, N., Kar, P.P., and Sajjanar, M., Oral Health Dent. Manag., 2016, vol. 15, p. 93.Google Scholar
  13. 13.
    Chhabra, R.S., Thompson, M., Elwell, M.R., and Gerken, D.K., Food Chem. Toxicol., 1990, vol. 28, p. 717.CrossRefGoogle Scholar
  14. 14.
    Chhabra, R.S., Huff, J.E., Haseman, J.K., Elwell, M.R., and Peters, A.C., Food Chem. Toxicol., 1991, vol. 29, p. 119.CrossRefGoogle Scholar
  15. 15.
    Werle, P., Merz, F., and Habrich, J., US Patent 6844306, 2015.Google Scholar
  16. 16.
    Heard, D.D. and Ashworth, R.W., J. Pharm. Pharmacol., 1968, vol. 20, p. 505.CrossRefGoogle Scholar
  17. 17.
    Modak, S.M. and Sampath, L.A., US Patent 20080075761, 2008.Google Scholar
  18. 18.
    Lboutounne, H., Chaulet, J.-F., Ploton, C., Falson, F., and Pirot, F., J. Control. Release, 2002, vol. 82, p. 319.CrossRefGoogle Scholar
  19. 19.
    Schönfeldt, N., Grenzfachenaktive Athylen-Addukte, Stuttgart: Wissenschaftliche, 1976.Google Scholar
  20. 20.
    Zadymova, N.M., Karmasheva, N.V., Poteshnova, M.V., and Tsikurina, N.N., Colloid J., 2002, vol. 64, p. 400.CrossRefGoogle Scholar
  21. 21.
    Zadymova, N.M., Tsikurina, N.N., and Poteshnova, M.V., Colloid J., 2003, vol. 65, p. 314.CrossRefGoogle Scholar
  22. 22.
    Kantarci, G., Ozguney, I., Karasulu, Y., Arzik, S., and Guneri, T., AAPS Pharm. Sci. Technol., 2007, vol. 8, p. 75.CrossRefGoogle Scholar
  23. 23.
    Tavares, L., Shevchuk, I., Alfonso, M., Marcenyak, G., and Valia, K., US Patent 7018649, 2006.Google Scholar
  24. 24.
    Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Vysshaya Shkola, 2006.Google Scholar
  25. 25.
    Rusanov, A.I., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Khimiya, 1992.Google Scholar
  26. 26.
    Edwards, D.A., Luthy, R.G., and Liu, Z., Environ. Sci. Technol., 1991, vol. 25, p. 127.CrossRefGoogle Scholar
  27. 27.
    Zadymova, N.M. and Ivanova, N.I., Colloid J., 2013, vol. 75, p. 159.CrossRefGoogle Scholar
  28. 28.
    Zadymova, N.M. and Ivanova, N.I., Vestn. Mosk. Univ., Ser. 2: Khim., 2013, vol. 68, p. 112.Google Scholar
  29. 29.
    Høiland, H. and Blokhus, A.M., in Handbook of Surface and Colloid Chemistry, Birdi, K.S., Ed., Boca Raton: CRC, 2008, p. 379.Google Scholar
  30. 30.
    PubChem open chemistry databas. https://pubchem. ncbi.nlm.nih.gov/compound/5360566.Google Scholar
  31. 31.
    Moskva, V.V., Sorosovskii Obrazovat. Zh., 1999, no. 2, p. 58.Google Scholar
  32. 32.
    Gimenez-Martin, E., Lopez-Andrade, M., Ontiveros-Ortega, A., and Espinosa-Jimenez, M., Cellulose, 2009, vol. 16, p. 467.CrossRefGoogle Scholar
  33. 33.
    Musial, W., Voncina, B., Pluta, J., and Kokol, V., Sci. World J., vol. 2012. doi 10.1100/2012/243707Google Scholar
  34. 34.
    Faergemann, Ya., RU Patent 2500394 C2 (2013).Google Scholar
  35. 35.
    Hagi, A., Iwata, K., Nii, T., Nakata, H., Tsubotani, Y., and Inoue, Y., Antimicrob. Agents Chemother., 2015, vol. 59, p. 4551.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations