Advertisement

Colloid Journal

, Volume 80, Issue 2, pp 229–242 | Cite as

The Effect of Temperature on Nucleation of Condensed Water Phase on the Surface of a β-AgI Crystal. 2. Formation Work

  • S. V. Shevkunov
Article
  • 24 Downloads

Abstract

In the condensation mechanism of heterogeneous ice formation, water crystallization occurs after a necessary amount of the liquid phase has accumulated on a substrate surface. In this way, the ice-forming activity of the surface is governed by its adsorption ability with respect to water vapor. The Monte Carlo canonical statistical ensemble method has been used to calculate the free energy, entropy, and work of nucleation of a disordered condensed water phase on the surface of crystalline silver iodide and to determine the surface tension. Comparative calculations have been performed at 260 and 320 K for the defect-free surface of a basal face of a crystal. The surface of a β-AgI crystal is completely covered with a monomolecular film even in unsaturated water vapors. The surface tension at the growing nucleus–substrate interface substantially increases due to the formation of the underlying film, and the growth of the nucleus becomes possible only in a supersaturated vapor. As the vapor density increases, the thickness of the condensed water layer grows, and, at negative Celsius temperatures, conditions are created for its crystallization. The underlying film with pronounced hydrophobic properties hinders nucleation, thereby decreasing the ice-forming activity of the surface in the condensation process. Under these conditions, the observed abnormally high ice-forming activity of silver-iodide aerosol particles may be explained by the presence of numerous crystal defects on the particle surface, with these defects representing channels that provide overcoming the hindering action of the film.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volmer, M. and Weber, A., Z. Phys. Chem., 1926, vol. 119, p. C. 277.Google Scholar
  2. 2.
    Farkas, L., Z. Phys. Chem., 1927, vol. 125, p. 236.Google Scholar
  3. 3.
    Becker, R. and Döring, W., Ann. Phys. (New York), 1935, vol. 24, p. 719.Google Scholar
  4. 4.
    Wyslouzil, B.E. and Wolk, J., J. Chem. Phys., 2016, vol. 145, p. 211702.CrossRefGoogle Scholar
  5. 5.
    Cheng, B. and Ceriotti, M., J. Chem. Phys., 2017, vol. 146, p. 034106.CrossRefGoogle Scholar
  6. 6.
    Keasler, S.J. and Siepmann, J.I., J. Chem. Phys., 2015, vol. 143, p. 164516.CrossRefGoogle Scholar
  7. 7.
    Abyzov, A.S. and Schmelzer, J.W.P., J. Chem. Phys., 2013, vol. 138, p. 164504.CrossRefGoogle Scholar
  8. 8.
    Angulil, R., Diemand, J., Tanaka, K.K., and Tanaka, H., J. Chem. Phys., 2015, vol. 143, p. 064507.CrossRefGoogle Scholar
  9. 9.
    Warrier, P., Khan, M.N., Srivastava, V., Maupin, C.M., and Koh, C.A., J. Chem. Phys., 2016, vol. 145, p. 211705.CrossRefGoogle Scholar
  10. 10.
    Sanz, E., Vega, C., Espinosa, J.R., Caballero-Bernal, R., Abascal, J.L.F., and Valeriani, C., J. Am. Chem. Soc., 2013, vol. 135, p. 15008.CrossRefGoogle Scholar
  11. 11.
    Vali, G., DeMott, P.J., Möhler, O., and Whale, T.F., Atmos. Chem. Phys., 2015, vol. 15, p. 10263.CrossRefGoogle Scholar
  12. 12.
    Moreno, L.A.L., Stetzer, O., and Lohmann, U., Atmos. Chem. Phys., 2013, vol. 13, p. 9745.CrossRefGoogle Scholar
  13. 13.
    Gokhale, N.R. and Goold, J., J. Appl. Meteorol., 1968, vol. 7, p. 870.CrossRefGoogle Scholar
  14. 14.
    Marcolli, C., Atmos. Chem. Phys., 2014, vol. 14, p. 2071.CrossRefGoogle Scholar
  15. 15.
    Amvrosov, A.F. and Vlasyuk, M.P., in Tr. Tsentr. Aerolog. Observatorii, Kuzenkov, A.F. and Khvorost’yanov, V.I., Eds., Moscow: Gidrometeoizdat, 1987, no. 164, p. 54.Google Scholar
  16. 16.
    Timofeev, N.E., L’doobrazuyushchie pirotekhnicheskie sostavy i sredstva (Ice-Forming Pyrotechnical Compositions and Means), Kazan: KazGTU, 1995.Google Scholar
  17. 17.
    Belyaev, V.P., Martines, D., Petrov, V.V., Peres, K., and Puentes, G., in Tr. Tsentr. Aerolog. Observatorii, Zimin, B.I., Ed., Moscow: Gidrometeoizdat, 1992, no. 177, p. 62.Google Scholar
  18. 18.
    Bakhanova, R.A., Kiselev, V.I., Kuku, E.I., Kim, N.S., and Shkodkin, A.V., Tr. UkrNIGMI, Bakhanova, R.A. and Osokina, I.N., Eds., Moscow: Gidrometeoizdat, 1991, no. 242, p. 102.Google Scholar
  19. 19.
    Bakhanova, R.A., Voit, F.Ya., Lunin, G.N., et al., Abstracts of Papers, Vsesoyuz. konf. “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” (All-Union Conf. “Active Effect on Hydrometeorological Processes”), Nal’chik, 1991, St. Petersburg: Gidrometeoizdat, 1995, vol. 1, p. 118.Google Scholar
  20. 20.
    Permyakov, G.N., Bezopasnost’ primeneniya aktivnykh sredstv vozdeistviya (Safe Application of Active Means), St. Petersburg: Balt. Gos. Tekh. Univ., 1996.Google Scholar
  21. 21.
    Vodop’yanov, M.Ya., Permyakov, G.N., and Churbanov, E.V., Abstracts of Papers, Vsesoyuz. konf. “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” (All-Union Conf. “Active Effect on Hydrometeorological Processes”), Nal’chik, 1991, St. Petersburg: Gidrometeoizdat, 1995, vol. 2, p. 166.Google Scholar
  22. 22.
    Bakhsoliani, M.G., Bessonov, V.A., Grishin, Yu.P., Iordanskii, M.A., Kartsivadze, A.I., Nesmeyanov, P.A., Salukvadze, T.G., Simonov, A.Ya., Sutugin, A.G., and Tsitskishvili, M.S., Abstracts of Papers, Vsesoyuz. seminar “Aktivnye vozdeistviya na gradovye protsessy i perspektivy usovershenstvovaniya l’doobrazuyushchikh reagentov dlya praktiki aktivnykh vozdeistvii” (All-Union Workshop “Active Effect on Hail Processes and Prospects of Refining Ice-Forming Reagents for Active Effect Practice”), Nal’chik, 1989, Fedchenko, L.M., Ed., Moscow: Gidrometeoizdat, 1991, p. 136.Google Scholar
  23. 23.
    Nicolet, M., Stetzer, O., Lüönd, F., Möhler, O., and Lohmann, U., Atmos. Chem. Phys., 2010, vol. 10, p. 313.CrossRefGoogle Scholar
  24. 24.
    Langer, G., Cooper, G., Nagamoto, C.T., and Rosinski, J., J. Appl. Meteorol., 1978, vol. 17, p. 1039.CrossRefGoogle Scholar
  25. 25.
    Sax, R.I. and Goldsmith, P., Q. J. R. Meteorol. Soc., 1972, vol. 98, p. 60.CrossRefGoogle Scholar
  26. 26.
    Shaw, R.A., Durant, A.J., and Mi, Y., J. Phys. Chem. B, 2005, vol. 109, p. 9865.CrossRefGoogle Scholar
  27. 27.
    Durant, A.J. and Shaw, R.A., Geophys. Rev. Lett., 2005, vol. 32, p. L20814.CrossRefGoogle Scholar
  28. 28.
    Fornea, A.P., Brooks, S.D., Dooley, J.B., and Saha, A., J. Geophys. Res., 2009, vol. 114, p. D13201.CrossRefGoogle Scholar
  29. 29.
    Murray, B.J., O’Sullivan, D., Atkinson, J.D., and Webb, M.E., Chem. Soc. Rev., 2012, vol. 41, p. 6519.CrossRefGoogle Scholar
  30. 30.
    Gurganus, C.W., Charnawskas, J.C., Kostinski, A.B., and Shaw, R.A., Phys. Rev. Lett., 2014, vol. 113, p. 235701.CrossRefGoogle Scholar
  31. 31.
    Vlasov, L.A. and Dovgalyuk, Yu.A., in Tr. Glavn. Geofiz. Observatorii im. A.I. Voeikova, Vorob’ev, B.M. and Zinchenko, A.V., Eds., Leningrad: Gidrometeoizdat, 1988, p. 129.Google Scholar
  32. 32.
    Corrin, M.L. and Nelson, J.A., J. Phys. Chem., 1968, vol. 72, p. 643.CrossRefGoogle Scholar
  33. 33.
    Hall, P.G. and Tompkins, F.C., Trans. Faraday Soc., 1962, vol. 1734.Google Scholar
  34. 34.
    Tcheurekdjian, N., Zettlemoyer, A.C., and Chessick, J.J., J. Phys. Chem., 1964, vol. 68, p. 773.CrossRefGoogle Scholar
  35. 35.
    Shevkunov, S.V., Dokl., 2005, vol. 402, p. 41.Google Scholar
  36. 36.
    Shevkunov, S.V., Russ. J. Gen. Chem., 2005, vol. 75, p. 1632.CrossRefGoogle Scholar
  37. 37.
    Shevkunov, S.V., Russ. J. Phys. Chem., 2006, vol. 80, p. 769.CrossRefGoogle Scholar
  38. 38.
    Shevkunov, S.V., Colloid J., 2006, vol. 68, p. 357.CrossRefGoogle Scholar
  39. 39.
    Barchet, W.R. and Corrin, M.L., J. Phys. Chem., 1972, vol. 76, p. 2280.CrossRefGoogle Scholar
  40. 40.
    Bakhanova, R.A., Kiselev, V.I., Kuku, E.I., and Oleinik, R.V., Tr. UkrNIGMI, Bakhanov, V.P. and Voronov, G.S., Eds., Moscow: Gidrometeoizdat, 1989, no. 230, p. 11.Google Scholar
  41. 41.
    Kim, N.S., Shilin, A.G., and Shkodkin, A.V., Kolloidn. Zh., 1990, vol. 52, p. 579.Google Scholar
  42. 42.
    Plaude, N.O. and Sosnikova, E.V., in Tr. Tsentr. Aerolog. Observatorii, Plaude, N.O., Ed., St. Petersburg: Gidrometeoizdat, 1996, no. 181, p. 78.Google Scholar
  43. 43.
    Cox, S.J., Kathmann, S.M., Slater, B., and Michaelides, A., J. Chem. Phys., 2015, vol. 142, p. 184704.CrossRefGoogle Scholar
  44. 44.
    Cox, S.J., Kathmann, S.M., Slater, B., and Michaelides, A., J. Chem. Phys., 2015, vol. 142, p. 184705.CrossRefGoogle Scholar
  45. 45.
    Taylor, J.H. and Hale, B.N., Phys. Rev. B, 1993, vol. 47, p. 9732.CrossRefGoogle Scholar
  46. 46.
    Barnes, G.T., Z. Angew. Math. Phys., 1963, vol. 14, p. 510.CrossRefGoogle Scholar
  47. 47.
    Shevkunov, S.V., Colloid J., 2006, vol. 68, p. 632.CrossRefGoogle Scholar
  48. 48.
    Shevkunov, S.V., Zh. Fiz. Khim., 2005, vol. 79, p. 1860.Google Scholar
  49. 49.
    Shevkunov, S.V., JETP, 2008, vol. 107, p. 965.CrossRefGoogle Scholar
  50. 50.
    Shevkunov, S.V., Colloid J., 2006, vol. 68, p. 370.CrossRefGoogle Scholar
  51. 51.
    Shevkunov, S.V., Colloid J., 2007, vol. 69, p. 380.Google Scholar
  52. 52.
    Shevkunov, S.V., Colloid J., 2007, vol. 69, p. 378.CrossRefGoogle Scholar
  53. 53.
    Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 221.CrossRefGoogle Scholar
  54. 54.
    Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 240.CrossRefGoogle Scholar
  55. 55.
    Anderson, B.J. and Hallett, J., J. Atmos. Sci., 1976, vol. 33, p. 822.CrossRefGoogle Scholar
  56. 56.
    Shevkunov, S.V., Colloid J. (in press).Google Scholar
  57. 57.
    Shevkunov, S.V., Zh. Eksp. Teor. Fiz., 2009, vol. 135, p. 510.Google Scholar
  58. 58.
    Shevkunov, S.V., Lukyanv, S.I., Leyssale, J.-M., and Millot, C., Chem. Phys., 2005, vol. 310, p. 97.CrossRefGoogle Scholar
  59. 59.
    Shevkunov, S.V., Colloid J., 2005, vol. 67, p. 509.CrossRefGoogle Scholar
  60. 60.
    Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Chem. Phys., 2007, vol. 332, p. 188.CrossRefGoogle Scholar
  61. 61.
    Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Fluid Phase Equilib., 2005, vol. 233, p. 34.CrossRefGoogle Scholar
  62. 62.
    Shevkunov, S.V., Russ. J. Phys. Chem., 2011, vol. 85, p. 1584.CrossRefGoogle Scholar
  63. 63.
    Shevkunov, S.V., Russ. J. Electrochem., 2014, vol. 50, p. 1118.CrossRefGoogle Scholar
  64. 64.
    Hale, B.N. and Kiefer, J., J. Chem. Phys., 1980, vol. 73, p. 923.CrossRefGoogle Scholar
  65. 65.
    Stillinger, F.H. and Rahman, A., J. Chem. Phys., 1974, vol. 60, p. 1545.CrossRefGoogle Scholar
  66. 66.
    Glatz, B. and Sarupria, S., J. Chem. Phys., 2016, vol. 145, p. 211924.CrossRefGoogle Scholar
  67. 67.
    Zdenek, F. and English, N.J., J. Chem. Phys., 2016, vol. 145, p. 204706.CrossRefGoogle Scholar
  68. 68.
    Malfreyt, P., Mol. Simul., 2014, vol. 40, p. 106.CrossRefGoogle Scholar
  69. 69.
    Ma, Y.-M., Zhang, H., and Zhang, B.-J., Mol. Simul., 2014, vol. 40, p. 634.CrossRefGoogle Scholar
  70. 70.
    Shevkunov, S.V., Russ. J. Phys. Chem., 2007, vol. 81, p. 2047.CrossRefGoogle Scholar
  71. 71.
    Shevkunov, S.V., Dokl., 2011, vol. 438, p. 752.Google Scholar
  72. 72.
    Shevkunov, S.V., Colloid J., 2012, vol. 74, p. 589.CrossRefGoogle Scholar
  73. 73.
    Shevkunov, S.V., Colloid J., 2012, vol. 74, p. 608.CrossRefGoogle Scholar
  74. 74.
    Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P. and Rabinovich, V.A., Eds., Moscow: Khimiya, 1966, vol. 1.Google Scholar
  75. 75.
    Wang, C., Lu, H., Wang, Z., Xiu, P., Zhou, B., Zuo, G., Wan, R., Hu, J., and Fang, H., Phys. Rev. Lett., 2009, vol. 103, p. 137801.CrossRefGoogle Scholar
  76. 76.
    Shevkunov, S.V., Colloid J., 2011, vol. 73, p. 275.CrossRefGoogle Scholar
  77. 77.
    Parshutkina, I.P., Tr. Tsentr. Aerolog. Observatorii, St. Petersburg: Gidrometeoizdat, 1996, no. 181, p. 69.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations