A Cell Model of a Membrane with Allowance for Variable Viscosity of Liquid in Porous Shells of Spherical Grains
- 2 Downloads
Abstract
The Happel–Brenner cell method has been employed to calculate the hydrodynamic permeability of a porous medium (membrane) composed of a set of partially porous spherical particles with solid impermeable cores. This representation is used to describe the globular structure of membranes containing soluble grains. The apparent viscosity of a liquid is suggested to increase as a power function of the depth of the porous shell from the viscosity of the pure liquid at the porous medium–liquid shell interface to some larger value at the boundary with the impermeable core. All known boundary conditions used for the cell surface, i.e., those proposed by Happel, Kuwabara, Kvashnin, and Cunningham, have been considered. Important limiting cases have been analyzed.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, Leyden: Noordhoff, 1965, 1973.Google Scholar
- 2.Churaev, N., Sergeeva, I., and Derjaguin, B., J. Colloid Interface Sci., 1981, vol. 84, p. 451.CrossRefGoogle Scholar
- 3.Varoqui, R. and Dejardin, P., J. Chem. Phys., 1977, vol. 66, p. 4395.CrossRefGoogle Scholar
- 4.Churaev, N.V., Fizikokhimiya protsessov massoperenosa v poristykh telakh (Physical Chemistry of Mass Transfer in Porous Bodies), Moscow: Khimiya, 1990.Google Scholar
- 5.Hiller, J. and Hoffman, H., J. Comp. Physiol., 1953, vol. 42, p. 203.Google Scholar
- 6.Parsons, D. and Subjeck, J., Biochem. Biophys. Acta, 1972, vol. 55, p. 440.Google Scholar
- 7.Masliyah, J., Neale, G., Malysa, K., and Van de Ven, T., Chem. Eng. Sci., 1987, vol. 42, p. 245.CrossRefGoogle Scholar
- 8.Garvey, M., Tadros, Th., and Vincent, B., J. Colloid Interface Sci., 1975, vol. 55, p. 440.CrossRefGoogle Scholar
- 9.Pefferkorn, E., Dejardin, P., and Varoqui, R., J. Colloid Interface Sci., 1975, vol. 63, p. 353.CrossRefGoogle Scholar
- 10.Vasin, S.I., Kharitonova, T.V., and Filippov, A.N., Colloid J., 2011, vol. 73, p. 158.CrossRefGoogle Scholar
- 11.Perepelkin, P.V., Starov, V.M., and Filippov, A.N., Kolloidn. Zh., 1992, vol. 54, p. 139.Google Scholar
- 12.Filippov, A.N., Vasin, S.I., and Starov, V.M., Colloids Surf. A, 2006, vols. 282—283, p. 272.CrossRefGoogle Scholar
- 13.Vasin, S.I. and Filippov, A.N., Colloid J., 2004, vol. 66, p. 266.CrossRefGoogle Scholar
- 14.Brinkman, H.C., Appl. Sci. Res. London A, 1947, vol. 1, p. 27.CrossRefGoogle Scholar
- 15.Ochoa-Tapia, J.A. and Whitaker, S., Int. J. Heat Mass Transfer, 1995, vol. 38, p. 2635.CrossRefGoogle Scholar
- 16.Vasin, S.I. and Filippov, A.N., Colloid J., 2009, vol. 71, p. 31.CrossRefGoogle Scholar
- 17.Yadav, P.K., Tiwari, A., Deo, S., Filippov, A., and Vasin, S., Acta Mech., 2010, vol. 215, p. 193.CrossRefGoogle Scholar
- 18.Deo, S., Filippov, A., Tiwari, A., Vasin, S., and Starov, V., Adv. Colloid Interface Sci., 2011, vol. 164, p. 21.CrossRefGoogle Scholar
- 19.Kuwabara, S., J. Phys. Soc. Jpn., 1959, vol. 14, p. 527.CrossRefGoogle Scholar
- 20.Kvashnin, A.G., Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1979, no. 4, p. 154.Google Scholar
- 21.Cunningham, E., Proc. R. Soc. London A, 1910, vol. 83, p. 357.CrossRefGoogle Scholar
- 22.De Groot, S. and Mazur, P., Nonequilibrium Thermodynamics, Amsterdam: North-Holland, 1962.Google Scholar