Advertisement

Colloid Journal

, Volume 80, Issue 2, pp 184–188 | Cite as

The Dipole Moment of Reverse Micelles according to Computer Simulation Data

  • I. V. Kopanichuk
  • A. A. Vanin
  • E. N. Brodskaya
Article
  • 27 Downloads

Abstract

Sodium 1,4-bis[(2-ethylhexyl)oxy]-1,4-dioxybutane-2-sulfonate (Aerosol OT) reverse micelles in isooctane have been simulated, and the mean-square dipole moment has been calculated. The formed isolated micelles have been classified according to aggregate radius and surface area per one surfactant molecule. It has been shown that, for micelles with a constant surface density of surfactant anion charges, the meansquare dipole moment rises with the aggregate size faster than the squared radius does. Dipole moment values obtained within the atomistic model for a reverse micelle are much higher than the values presented in the literature for the primitive model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oosawa, F., Biopolymers, 1968, vol. 6, p. 1633.CrossRefGoogle Scholar
  2. 2.
    Hansen, J.P. and Lowen, H., Annu. Rev. Phys. Chem., 2000, vol. 51, p. 209.CrossRefGoogle Scholar
  3. 3.
    Luzar, A. and Bratko, D., J. Chem. Phys., 1990, vol. 92, p. 642.CrossRefGoogle Scholar
  4. 4.
    Bratko, D., Woodward, C.E., and Luzar, A., J. Chem. Phys., 1991, vol. 95, p. 5318.CrossRefGoogle Scholar
  5. 5.
    Sheng, Y. and Tsao, H.K., Phys. Rev. Lett., 2001, vol. 87, p. 185501.CrossRefGoogle Scholar
  6. 6.
    Oostenbrink, C., Villa, A., Mark, A.E., and Van Gunsteren, W.F., J. Comput. Chem., 2004, vol. 25, p. 1656.CrossRefGoogle Scholar
  7. 7.
    Nevidimov, A.V. and Razumov, V.F., Mol. Phys., 2009, vol. 107, p. 2169.CrossRefGoogle Scholar
  8. 8.
    Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., and Hermans, J., in Intermolecular Forces, Pullman, B., Ed., Dordrecht: Reidel, 1981, p. 331.Google Scholar
  9. 9.
    Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., and Lindahl, E., SoftwareX, 2015, vols. 1–2, p. 19.CrossRefGoogle Scholar
  10. 10.
    Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G., J. Chem. Phys., 1995, vol. 103, p. 8577.CrossRefGoogle Scholar
  11. 11.
    Humphrey, W., Dalke, A., and Schulten, K., J. Mol. Graph. Model., 1996, vol. 14, p. 33.CrossRefGoogle Scholar
  12. 12.
    Muenz, M. and Biggin, P.C., J. Chem. Inf. Model., 2012, vol. 52, p. 255.CrossRefGoogle Scholar
  13. 13.
    Kopanichuk, I.V., Vanin, A.A., and Brodskaya, E.N., Colloid J., 2017, vol. 79, p. 328.CrossRefGoogle Scholar
  14. 14.
    Eicke, H.F. and Rehak, J., Helv. Chim. Acta, 1976, vol. 59, p. 2883.CrossRefGoogle Scholar
  15. 15.
    Maitra, A., J. Phys. Chem., 1984, vol. 88, p. 5122.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Kopanichuk
    • 1
  • A. A. Vanin
    • 1
  • E. N. Brodskaya
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations