Colloid Journal

, Volume 80, Issue 2, pp 141–147 | Cite as

One-Stage Synthesis of Gold Hydrosol with Nanoparticles of Desired Shape

  • E. V. Abkhalimov
  • E. A. Il’ina
  • A. A. Timofeev
  • B. G. Ershov


The effect of borohydride concentration on the synthesis of gold nanoparticles in solutions of chloroauric acid, cetyltrimethylammonium bromide, and ascorbic acid in the absence of seeds has been studied systematically. Variations in the concentration of NaBH4 allow one to obtain particles of different sizes and shapes. A method has been developed for the one-stage synthesis of large pentagonal gold rods (the average length and thickness are 550 ± 135 and 71.2 ± 11.6 nm, respectively) with a high yield using borohydride in an ultra-low (≤5 × 10–8 mol/L) concentration. The resulting particles have been characterized using optical spectroscopy, scanning and transmission electron microscopy (including high-resolution technique), and electron diffraction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Metal Nanoparticles: Synthesis, Characterization and Applications, Feldheim, D.L. and Foss, C.A., Eds., New York: CRC, 2001.Google Scholar
  2. 2.
    Daniel, M.-C. and Astruc, D., Chem. Rev., 2004, vol. 104, p. 293.CrossRefGoogle Scholar
  3. 3.
    Hodak, J.H., Henglein, A., and Hartland, G.V., J. Phys. Chem. B, 2000, vol. 104, p. 9954.CrossRefGoogle Scholar
  4. 4.
    Zhang, X.-L., Zheng, C., Zhang, Y., Yang, H.-H., Liu, X., and Liu, J., J. Nanopart. Res., 2016, vol. 18, p. 174.CrossRefGoogle Scholar
  5. 5.
    Thompson, D.T., Nano Today, 2007, vol. 2, p. 40.CrossRefGoogle Scholar
  6. 6.
    Mitsudome, T. and Kaneda, K., Green Chem., 2013, vol. 15, p. 2636.CrossRefGoogle Scholar
  7. 7.
    Ershov, B.G., Abkhalimov, E.V., Solovov, R.D., and Roldughin, V.I., Phys. Chem. Chem. Phys., 2016, vol. 18, p. 13459.CrossRefGoogle Scholar
  8. 8.
    Kamat, P.V., J. Phys. Chem. B, 2002, vol. 106, p. 7729.CrossRefGoogle Scholar
  9. 9.
    Jongjinakool, S., Palasak, K., and Teepoo, S., Energy Proc., 2014, vol. 56, p. 10.CrossRefGoogle Scholar
  10. 10.
    Jain, P.K., Lee, K.S., El-Sayed, I.H., and El-Sayed, M.A., J. Phys. Chem. B, 2014, vol. 110, p. 7238.CrossRefGoogle Scholar
  11. 11.
    Quester, K., Avalos-Borja, M., Vilchis-Nestor, A.R., Camacho-López, M.A., and Castro-Longoria, E., PLoS One, 2013, vol. 8.Google Scholar
  12. 12.
    Boeva, O.A., Ershov, B.G., Zhavoronkova, K.N., Odintsov, A.A., Solovov, R.D., Abkhalimov, E.V., and Evdokimenko, N.D., Dokl., 2015, vol. 463, p. 165.Google Scholar
  13. 13.
    Ershov, B.G., Abkhalimov, E.V., Roldughin, V.I., Rudoy, V.M., Dement’eva, O.V., and Solovov, R.D., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 18431.CrossRefGoogle Scholar
  14. 14.
    Chung, P.-J., Lyu, L.-M., and Huang, M.H., Chem.-Eur. J., 2011, vol. 17, p. 9746.CrossRefGoogle Scholar
  15. 15.
    Lohse, S.E., Burrows, N.D., Scarabelli, L., Liz-Marzán, L.M., and Murphy, C.J., Chem. Mater., 2014, vol. 26, p. 34.CrossRefGoogle Scholar
  16. 16.
    Wu, H.-L., Kuo, C.-H., and Huang, M.H., Langmuir, 2010, vol. 26, p. 12307.CrossRefGoogle Scholar
  17. 17.
    Nikoobakht, B. and El-Sayed, M.A., Chem. Mater., 2003, vol. 15, p. 1957.CrossRefGoogle Scholar
  18. 18.
    Zhai, Y., DuChene, J.S., Wang, Y.-C., Qiu, J., Johnston-Peck, A.C., You, B., Guo, W., DiCiaccio, B., Qian, K., Zhao, E.W., Ooi, F., Hu, D., Su, D., Stach, E.A., Zhu, Z., and Wei, W.D., Nature Mater., 2016, vol. 15, p. 889.CrossRefGoogle Scholar
  19. 19.
    Lee, S.J., Park, G., Seo, D., Ka, D., Kim, S.Y., Chung, I.S., and Song, H., Chem.-Eur. J., 2011, vol. 17, p. 8466.CrossRefGoogle Scholar
  20. 20.
    Li, C., Shuford, K.L., Park, Q.-H., Cai, W., Li, Y., Lee, E.J., and Cho, S.O., Angew. Chem., 2007, vol. 119, p. 3328.CrossRefGoogle Scholar
  21. 21.
    Smith, D.K. and Korgel, B.A., Langmuir, 2008, vol. 24, p. 644.CrossRefGoogle Scholar
  22. 22.
    Wang, A., Ng, H.P., Xu, Y., Li, Y., Zheng, Y., Yu, J., Han, F., Peng, F., and Fu, L., J. Nanomater., 2014, vol. 2014, Article ID 451232.Google Scholar
  23. 23.
    Johnson, C.J., Dujardin, E., Davis, S.A., Murphy, C.J., and Mann, S., J. Mater. Chem., 2002, vol. 12, p. 1765.CrossRefGoogle Scholar
  24. 24.
    Jana, N.R., Gearheart, L., and Murphy, C.J., Langmuir, 2001, vol. 17, p. 6782.CrossRefGoogle Scholar
  25. 25.
    Bullen, C., Zijlstra, P., Bakker, E., Gu, M., and Raston, C., Cryst. Growth Des., 2011, vol. 11, p. 3375.CrossRefGoogle Scholar
  26. 26.
    Chang, C.-C., Wu, H.-L., Kuo, C.-H., and Huang, M.H., Chem. Mater., 2008, vol. 20, p. 7570.CrossRefGoogle Scholar
  27. 27.
    Millstone, J.E., Metraux, G.S., and Mirkin, C.A., Adv. Funct. Mater., 2006, vol. 16, p. 1209.CrossRefGoogle Scholar
  28. 28.
    Ha, T.H., Koo, H.-J., and Chung, B.H., J. Phys. Chem. C, 2007, vol. 111, p. 1123.CrossRefGoogle Scholar
  29. 29.
    Pelaz, B., Grazu, V., Ibarra, A., Magen, C., Del Pino, P., and De la Fuente, J.M., Langmuir, 2012, vol. 28, p. 8965.CrossRefGoogle Scholar
  30. 30.
    Wu, H.-L., Kuo, C.-H., and Huang, M.H., Langmuir, 2010, vol. 26, p. 12307.CrossRefGoogle Scholar
  31. 31.
    Miranda, A., Malheiro, E., Eaton, P., Carvalho, P.A., De Castro, B., and Pereira, E., J. Porphyrins Phthalocyanines, 2011, vol. 15, p. 441.CrossRefGoogle Scholar
  32. 32.
    Hanarp, P., Käll, M., and Sutherland, D.S., J. Phys. Chem. B, 2011, vol. 107, p. 5768.CrossRefGoogle Scholar
  33. 33.
    Kim, F., Sohn, K., Wu, J., and Huang, J., J. Am. Chem. Soc., 2008, vol. 130, p. 14442.CrossRefGoogle Scholar
  34. 34.
    Zhang, J., Xi, C., Feng, C., Xia, H., Wang, D., and Tao, X., Langmuir, 2014, vol. 30, p. 2480.CrossRefGoogle Scholar
  35. 35.
    Kim, F., Sohn, K., Wu, J., and Huang, J., J. Am. Chem. Soc., 2008, vol. 130, p. 14442.CrossRefGoogle Scholar
  36. 36.
    Ali, M.R.K., Snyder, B., and El-Sayed, M.A., Langmuir, 2012, vol. 28, p. 9807.CrossRefGoogle Scholar
  37. 37.
    Oza, G., Pandey, S., Shah, R., Vishwanathan, M., Kesarkar, R., Sharon, M., and Sharon, M., Adv. Appl. Sci. Res., 2012, vol. 3, p. 1027.Google Scholar
  38. 38.
    CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., Boca Raton: CRC, 2005.Google Scholar
  39. 39.
    Tascioglu, S., Tetrahedron, 1996, vol. 52, p. 11113.CrossRefGoogle Scholar
  40. 40.
    Esumi, K., Matsuhisa, K., and Torigoe, K., Langmuir, 1995, vol. 11, p. 3285.CrossRefGoogle Scholar
  41. 41.
    Khan, Z., Singh, T., Hussain, J.L., and Hashmi, A.A., Colloids Surf. B, 2013, vol. 104, p. 11.CrossRefGoogle Scholar
  42. 42.
    Goia, D.V. and Matijevic, E., New J. Chem., 1998, p. 1203.Google Scholar
  43. 43.
    Jana, N.R., Gearheart, L., and Murphy, C.J., Chem. Mater., 2001, vol. 13, p. 2313.CrossRefGoogle Scholar
  44. 44.
    Shimizu, T., Teranishi, T., Hasegawa, S., and Miyake, M., J. Phys. Chem. B, 2011, vol. 107, p. 2719.CrossRefGoogle Scholar
  45. 45.
    Marangoni, V.S., Cancino-Bernardi, J., and Zucolotto, V., J. Biomed. Nanotechnol., 2016, vol. 12, p. 1136.CrossRefGoogle Scholar
  46. 46.
    Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L.M., and Mulvaney, P., Coord. Chem. Rev., 2005, vol. 249, p. 1870.CrossRefGoogle Scholar
  47. 47.
    Khanal, B.P. and Zubarev, E.R., J. Am. Chem. Soc., 2008, vol. 130, p. 12634.CrossRefGoogle Scholar
  48. 48.
    Pérez-Juste, J., Liz-Marzán, L.M., Carnie, S., Chan, D.Y.C., and Mulvaney, P., Adv. Funct. Mater., 2004, vol. 14, p. 571.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Abkhalimov
    • 1
  • E. A. Il’ina
    • 1
  • A. A. Timofeev
    • 2
  • B. G. Ershov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations