Monitoring Composite Fiber Failure Using Acoustic Emission System, Vibration Analyzer, and High-Speed Video Recording

Abstract

We consider the nature of the phenomenon of acoustic emission (AE) occurring in the process of deformation and destruction of solid bodies. A theoretical analysis of the processes of transformation and dissipation of energy during the destruction of structural bonds of an idealized model of a solid has been carried out. Using A-line32D and PCI-2 AE systems, Onyx vibration analyzer, and Videosprint high-speed camera, as well as numerical simulation in the LS-DYNA software environment, we study wave processes occurring during deformation and rupture of reinforcing fibers of composite materials. The obtained experimental and calculation data indicate that the main energy is emitted within the period of the aftereffect of fiber rupture in the range of sound frequencies less than 2 kHz. In this case, the energy of the peak values recorded in the ultrasonic frequency range does not exceed several percent of the maximum level at the carrier frequency in the audio range.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. 1

    Ivanov, V.I. and Barat V.A., Akustiko-emissionnaya diagnostika (Acoustic-Emission Diagnostics), Moscow: Spektr, 2017.

  2. 2

    Pollock, A., Acoustic emission testing, in Metals Handbook, Pollock, A., Ed., AST Int., 1989, vol. 17, pp. 278–294, 9th ed.

    Google Scholar 

  3. 3

    Makhutov, N.A., Prochnost’ i bezopasnost': fundamental’nye i prikladnye issledovaniya (Strength and Safety: Basic and Applied Research), Novosibirsk: Nauka, 2008.

  4. 4

    Matvienko, Yu.G., Modeli i kriterii mekhaniki razrusheniya (Fracture Mechanics Models and Criteria), Moscow: Fizmatlit, 2006.

  5. 5

    Perel'muter, M.N., Growth criterion for cracks with bonds in the end region, Prikl. Mat. Mekh., 2007, vol. 71, no. 1, pp. 152–171.

    Google Scholar 

  6. 6

    Hallquist, J.O., LS-DYNA Theoretical Manual, Livermore Software Technol. Corp., 2006.

    Google Scholar 

  7. 7

    Kompozitsionnye materialy / Spravochnik (Composite materials. Reference Book), Vasil’eva, V.V. and Tarnopol’skii, Yu.M., Eds., Moscow: Mashinostroenie, 1990.

  8. 8

    Gillis, P.P. and Hamstad, M.A., Some fundamental aspect of the theory of the acoustic emission, Mater. Sci. Eng., 1974, vol. 14, no. 1, pp. 103–108.

    Article  Google Scholar 

  9. 9

    Baranov, V.M. and Molodtsov, K.I., Akusticheskie pribory yadernoi energetiki (Acoustic Devices for Nuclear Power), Moscow: Atomizdat, 1980.

  10. 10

    Baranov, V.M., Kudryavtsev, E.M., Sarychev, G.A., and Shchavelin, V.M., Akusticheskaya emissiya pri trenii (Frictional Acoustic Emission), Moscow: Energoatomizdat, 1998.

  11. 11

    Bigus, G.A., Daniev, Yu.F., Bystrova, N.A., and Galkin, D.I., Osnovy diagnostiki tekhnicheskikh ustroistv i sooruzhenii (Fundamentals of Diagnostics of Technical Devices and Structures), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2015.

  12. 12

    Sjögren, T. and Svensson, I.L., Studying elastic deformation behaviour of cast irons by acoustic emission, Int. J. Cast Metal Res., 2013, vol. 18, no. 4, pp. 249–56.

    Article  Google Scholar 

  13. 13

    Pomponi, E. and Vinogradov, A., A real-time approach to acoustic emission clustering, Mech. Syst. Signal Process., 2013, vol. 40, no. 2, pp. 791–804.

    Article  Google Scholar 

  14. 14

    Pomponi, E., Vinogradov, A., and Danyuk, A., Wavelet based approach to signal activity detection and phase picking: Application to acoustic emission, Signal Process, 2015, vol. 115, pp. 110–119.

    Article  Google Scholar 

  15. 15

    Kietov, V., Henschel, S., and Krüger, L., Study of dynamic crack formation in nodular cast iron using the acoustic emission technique, Eng. Fract. Mech., 2018, vol. 188, no. 1, pp. 58–69.

    Article  Google Scholar 

  16. 16

    Gresil, M., Saleh, M.N., Arshad, M., and Soutis, C., Defect quantification in 3D angle interlock glass fibre composites using acoustic emission, 8th Eur. Workshop Struct. Health Monit. (EWSHM 2016) (Bilbao, Spain, July 5–8, 2016), pp. 1–10.

  17. 17

    Hanuman, N.S.V.N. and Bose, T., Acoustic nondestructive evaluation of Glass-Fibre Reinforced Plastic (GFRP) plate, NDE 2018 Conf. & Exhib. Soc. NDT (ISNT, NDE-India 2018) (Mumbai, India, December 19–21, 2018), pp. 1–6.

  18. 18

    Saeedifar, M., Najafabadi, M.A., Mohammadi, K., Fotouhi, M., Toudeshky, H.H., and Mohammadi, R., Acoustic emission-based methodology to evaluate delamination crack growth under quasi-static and fatigue loading conditions, J. Nondestr. Eval., 2018, vol. 37, no. 1, pp. 1–13.

    Article  Google Scholar 

  19. 19

    Sause, M.G.R., On use of signal features for acoustic emission source identification in fibre-reinforced composites, 33rd Eur. Conf. Acoust. Emission Test. (EWGAE) (Senlis. France, September 12–14, 2018), pp. 1–12.

  20. 20

    Matvienko, Yu.G., Vasil’ev, I.E., Bubnov, M.A., and Chernov, D.V., Influence of dimensions and shape of process cutouts on the accuracy of locating acoustic emission sources, Russ. J. Nondestr. Test., 2020, vol. 56, no. 2, pp. 101–109.

    CAS  Article  Google Scholar 

  21. 21

    Glebovsky, P.A. and Petrov, Yu.V., Kinetic interpretation of the structural-time criterion of fracture, Solid State Phys., 2004, vol. 24, no. 6, pp. 1021–1024.

    Google Scholar 

  22. 22

    Nosov, V.V., Acoustic-emission quality control of plastically deformed blanks, Russ. J. Nondestr. Test., 2017, vol. 53, no. 5, pp. 368–377.

    Article  Google Scholar 

  23. 23

    Nosov, V.V. and Zelenskii, N.A., Estimating the strength of welded hull elements of a submersible based on the micromechanical model of temporal dependences of acoustic-emission parameters, Russ. J. Nondestr. Test., 2017, vol. 53, no. 2, pp. 89–95.

    Article  Google Scholar 

  24. 24

    Chernov, D.V., Algorithm for determining the onset of plastic deformation based on a micromechanical model of acoustic emission, Vestn. Mosk. Energ. Inst., 2016, no. 3, pp. 97–103.

  25. 25

    Matvienko, Yu.G., Vasil’ev, I.E., Chernov, D.V., and Elizarov, S.V., Criterion parameters for assessing degradation of composite materials by acoustic emission testing, Russ. J. Nondestr. Test., 2018, vol. 54, no. 12, pp. 811–819.

    Article  Google Scholar 

  26. 26

    Vasil’ev, I.E., Matvienko, Yu.G., Chernov, D.V., and Elizarov, S.V., Monitoring the accumulation of damage in the caisson of the stabilizer of the MS-21 airframe with the use of acoustic emission, Probl. Mashinostr. Avtom., 2020, no. 2, pp. 118–141.

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-19-00769.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. E. Vasil’ev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makhutov, N.A., Ivanov, V.I., Sokolova, A.G. et al. Monitoring Composite Fiber Failure Using Acoustic Emission System, Vibration Analyzer, and High-Speed Video Recording. Russ J Nondestruct Test 56, 960–970 (2020). https://doi.org/10.1134/S1061830920120049

Download citation

Keywords:

  • acoustic emission
  • video recording
  • vibration analyzer
  • destruction of materials
  • fiber break
  • signal amplitude
  • energy
  • frequency spectrum