Skip to main content
Log in

Nondestructive Testing of Structurally Inhomogeneous Composite Materials by the Method of Elastic-Wave Velocity Hodograph

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

We consider theoretical foundations for the nondestructive testing of large-sized structures and structures made of structurally inhomogeneous composite materials by the method of elastic-wave velocity hodograph. The theoretical fundamentals of the method of elastic-wave velocity hodograph are presented for a single-layer medium, and the propagation of low-frequency elastic waves in a homogeneous isotropic single-layer medium is described. Based on the research, recommendations are given on detecting defects and determining the speed of propagation of elastic waves in a single-layer medium; this allows nondestructive testing of the physical and mechanical characteristics of the material in the layer and flaw detection and thickness gaging in large-sized structures and structures made of coarse-grained and composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Potapov, A.I., Polyakov, V.E., Syasko, V.A., Popov, A.A., and Kurianova, P.V., Low-frequency broadband ultrasonic transducers for testing articles manufactured of large-structure and composite materials. Part 1. Complete and partial degeneracy of vibration modes in piezoelectric elements of different geometric shapes, Russ. J. Nondestr. Test., 2015, vol. 51, no. 6, pp. 338–351.

    Article  Google Scholar 

  2. Potapov, A.I., Polyakov, V.E., Syas’ko, V.A., Popov, A.A., and Kur’yanova, P.V., Low-frequency broadband ultrasonic transducers for testing articles that are manufactured of large-structure and composite materials. Part 2. Excitation of low-frequency ultrasonic wide-band signals, Russ. J. Nondestr. Test., 2015, vol. 51, no. 7, pp. 407–421.

    Article  Google Scholar 

  3. Potapov, A.I., Using pulsed low-frequency ultrasonic methods to evaluate the quality of products made of coarse-grained materials, Defektoskopiya, 1979, no. 7, pp. 46–51.

  4. Potapov, A.I. and Polyakov, V.E., Ultrasonic low-frequency flaw detection of large-sized structures made of coarse-grained materials, in Nerazrushayushchii kontrol’ kompozitsionnykh materialov. Sb. tr. 1-i distantsionnoi NTK “Pribory i metody nerazrushayushchego kontrolya kachestva izdelii i konstruktsii iz kompozitsionnykh i neodnorodnykh materialov” (Nondestructive Testing of Composite Materials. Proc. 1st Distance Sci. Tech. Conf. “Devices and Methods for Nondestructive Quality Control of Products and Structures Made of Composite and Heterogeneous Materials”), St. Petersburg: Sven, 2015, pp. 155–171.

  5. Potapov, A.I., Kontrol’ kachestva i prognozirovanie nadezhnosti konstruktsii iz kompozitsionnykh materialov (Quality Control and Forecast of Reliability of Structures Made of Composite Materials), Leningrad: Mashinostroenie, Leningrad Div., 1980.

  6. Biot, M.A., Theory of propagation of elastic waves in fluid-saturated porous solid. Low-frequency range, J. Acoust. Soc. Am., 1956, vol. 28, no. 2, pp. 168–178.

    Article  Google Scholar 

  7. Attenborough, K., Acoustical characteristics of porous materials, Phys. Lett., 1982, vol. 82, pp. 179–227.

    Google Scholar 

  8. Frederickson, C.K., Sabatier, J. M., and Raspet, R., Acoustic characterization of rigid-frame air-filled porous media using both reflection and transmission measurement, J. Acoust. Soc. Am., 1996, vol. 99, no. 3, pp. 1326–1332.

    Article  Google Scholar 

  9. Geerits, T.W., Acoustic wave propagation through porous media revisited, J. Acoust. Soc. Am., 1996, vol. 100, no. 5, pp. 2949–2959.

    Article  Google Scholar 

  10. Stinson, M.R. and Champoux, Y., Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries, J. Acoust. Soc. Am., 1992, vol. 91, no. 2, pp. 685–695.

    Article  Google Scholar 

  11. Tourin, Derode, A., Peyre, A. and Fink, M., Transport parameters for an ultrasonic pulsed wave propagating in a multiple scattering medium, J. Acoust. Soc. Am., 2000, vol. 108, no. 2, pp. 503–512.

    Article  Google Scholar 

  12. Sessarego, J.-P., Sageloli, J. and Guillermin, R., Scattering by an elastic sphere embedded in an elastic isotropic medium, J. Acoust. Soc. Am., 1998, vol. 104, no. 5, pp. 2836–3844.

    Article  Google Scholar 

  13. Lange, Yu.V., Akusticheskie nizkochastotnye metody i sredstva nerazrushayushchego kontrolya mnogosloinykh konstruktsii (Acoustic Low-Frequency Methods and Means of Nondestructive Testing of Multilayered Structures), Moscow: Mashinostroenie, 1991.

  14. Napalkov, Yu.V. and Serdobol’skii, L.A., Rukovodstvo k uchebnoi geofizicheskoyi praktike po seismorazvedke. Chast’ II. Registratsiya i obrabotka polevykh seismogramm (Guide to Educational Geophysical Practice in Seismic Exploration. Part II. Recording and Processing Field Seismograms), Moscow: Gubkin Moscow Inst. Pet. Gas Ind., 1979.

  15. Bakirov, V.A. and Urupov A.K., Matematicheskie modeli anizotropnykh sred i ikh ispol’zovanie pri interpretatsii dannykh seismorazvedki (Mathematical Models of Anisotropic Media and Their Use in the Interpretation of Seismic Data), Moscow: Gubkin Moscow Inst. Pet. Gas Ind., 2000.

  16. Lyakhovitskii, F.M. and Nevskii, M.V., Analiz i interpretatsiya godografov otrazhennykh voln v sluchae poperechno-izotropnykh sred. Obzor/Seriya regional’noi, razvedochnoi i promyslovoi geofiziki (Analysis and Interpretation of the Hodographs of Reflected Waves in the Case of Transversely Isotropic Media. Overview. Series in Regional, Explorational, and Field Geophysics), Moscow: VIEMS, 1972.

  17. Nerazrushayushchii kontrol’ (Nondestructive Testing, in 5 Books.), Ermolov, I.N., Aleshin, N.P. and Potapov, A.I., Eds., Kniga 2. Akusticheskie metody kontrolya: Prakticheskoe posobie (Book 2: Methods of Acoustic Testing. A Practical Guide) Sukhorukov, V.V., Ed., Moscow: Vysshaya Shkola, 1991.

  18. Potapov, A.I. and Makhov, V.E., Physical basics of evaluating elastic characteristics of anisotropic composites by ultrasonic method, Russ. J. Nondestr. Test., 2017, vol. 53, no. 11, pp. 785–799.

    Article  Google Scholar 

  19. Potapov, A.I. and Makhov, V.E., Experimental ultrasonic study of the elastic modulus of glass fiber plastics in constructions, Russ. J. Nondestr. Test., 2018, vol. 54, no. 1, pp. 1–16.

    Article  Google Scholar 

  20. Potapov A.I. and Makhov, V.E., Methods for nondestructive testing and diagnostics of durability of articles made of polymer composite materials, Russ. J. Nondestr. Test., 2018, vol. 54, no. 3, pp. 151–163.

    Article  Google Scholar 

  21. Artem’ev, A.G., Fizicheskie osnovy seismorazvedki/Uchebnoe posobie (Physical Basics of Seismic Survey. A Study Guide), Saratov: Izd. Tsentr Nauka, 2012.

Download references

Funding

This work was carried out within the framework of the state order on topic “Diagnostics”, project no. АААА-А18-118020690196-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Potapov, A. V. Kondrat’ev or Ya. G. Smorodinskii.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapov, A.I., Kondrat’ev, A.V. & Smorodinskii, Y.G. Nondestructive Testing of Structurally Inhomogeneous Composite Materials by the Method of Elastic-Wave Velocity Hodograph. Russ J Nondestruct Test 55, 434–442 (2019). https://doi.org/10.1134/S106183091906007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106183091906007X

Keywords:

Navigation