Advertisement

Russian Journal of Nondestructive Testing

, Volume 55, Issue 5, pp 378–383 | Cite as

On the Possibility of Evaluating Magnetostriction Characteristics of Bulk Ferromagnets Based on Their Magnetic Properties

  • E. D. SerbinEmail author
  • V. N. KostinEmail author
MAGNETIC METHODS
  • 28 Downloads

Abstract

Based on experimental research, a relationship has been established between the critical fields, which are determined by the shape of the magnetization curve and major hysteresis loop of bulk samples of iron–carbon alloys, with the magnitude of a positive maximum of magnetostriction in these samples. By varying the annealing temperature of cold-deformed 20G steel, it has been shown that the studied critical fields are much more sensitive to changes in the stress-strain state than the known coercive force and residual induction.

Keywords:

magnetostriction hysteresis loop shape critical field coercive force residual induction stress-strain state 

Notes

FUNDING

The research was carried out within the state assignment of Minobrnauki of Russia (theme “Diagnostics” No. АААА-А18-118020690196-3), supported in part by RFBR (project no. 18-38-00253).

REFERENCES

  1. 1.
    Vonsovskii, S.V. and Shur, Ya.S., Ferromagnetizm (Ferromagnetism), Moscow-Leningrad: OGIZ-Gostekhizdat, 1948.Google Scholar
  2. 2.
    Bozorth, R.M., Ferromagnetism, Wiley-IEEE Press, 1993.CrossRefGoogle Scholar
  3. 3.
    Tikadzumi, S., Physics of Ferromagnetism, Oxford Univ. Press, 1997, 2nd Ed.Google Scholar
  4. 4.
    Belov K.P. Magnitostriktsionnye yavleniya i ikh tekhnicheskie prilozhneiya (Magnetostriction Phenomena and Their Technical Applications), Moscow: Nauka, 1987.Google Scholar
  5. 5.
    Vlasov, K.B. and Pravdin, L.S., Reversible and initial irreversible magnetoelastic and magnetostriction effects, Fiz. Met. Metalloved., 1979, vol. 48, no. 4, pp. 791–802.Google Scholar
  6. 6.
    Pravdin, L.S., Magnetoelastic characteristics of steel subjected to quasistatic influences, Defektoskopiya, 1982, no. 5, pp. 57–61.Google Scholar
  7. 7.
    Piotrowski, L., Augustyniak, B., Chmielewski, M., Lahanowski, J., and Lech-Grega, M., Study on the applicability of the measurements of magnetoelastic properties for nondestructive evaluation of thermally induced microstructure changes in the P91-grade steel, NDT & E Int., 2012, vol. 47, pp. 157–162.CrossRefGoogle Scholar
  8. 8.
    Piotrowski, L., Chmielewski, M., and Kowalewski, Z., On the application of magnetoelastic properties measurements for plastic level determination in martensitic steels, J. Electr. Eng., 2018, vol. 69, pp. 502–506.Google Scholar
  9. 9.
    Kostin, V.N., Kloster, A.A., and Gerasimov, E.G., Magnetic and magnetoacoustic properties of alloys based on iron, nickel, and cobalt with different magnetostriction values, Fiz. Met. Metalloved., 2000, vol. 90, no. 3, pp. 51–57.Google Scholar
  10. 10.
    Kostin, V.N., Effect of the magnetic state on the damping properties of iron and nickel alloys, Phys. Met. Metallogr., 2009, vol. 107, no. 1, pp. 29–37.CrossRefGoogle Scholar
  11. 11.
    Piotrowski, L., Augustyniak, B., Chmielewski, M., Landgraf, F.J.G., and Sablik, M.J., Impact of plastic deformation on magnetoacoustic properties of Fe-2% Si alloy, NDT & E Int., 2009, vol. 42, pp. 92–96.CrossRefGoogle Scholar
  12. 12.
    Kostin, V.N., Guriev, M.A., Vasilenko, O.N., Filatenkov, D.Yu., and Smorodinskii, Ya.G., Amplitude-frequency characteristics of magnetoacoustic emission of heat-treated iron alloys, Fiz. Mezomekh., 2013, vol. 16, pp. 103–110.Google Scholar
  13. 13.
    Kostin, V.N., Filatenkov, D.Yu., Chekasina, Yu.A., Vasilenko, O.N., and Serbin, E.D., Features of the excitation and registration of magnetoacoustic emission in ferromagnetic objects, Acoust. Phys., 2017, vol. 63, pp. 237–244.CrossRefGoogle Scholar
  14. 14.
    Makowska, K., Piotrowski, L., and Kowalewski, Z.L. Prediction of the mechanical properties of P91 steel by means of magneto-acoustic emission and acoustic birefringence, J. Nondestr. Eval., 2017, vol. 36, no. 2, article no. 43, pp. 1–10.Google Scholar
  15. 15.
    Yamasaki, T., Yamamoto, S., and Hirao, M., Effect of applied stresses on magnetostriction of low carbon steel, NDT & E Int., 1996, vol. 29, no. 5, pp. 263–268.CrossRefGoogle Scholar
  16. 16.
    Kostin, V.N., Filatenkov, D.Y., Vasilenko, O.N., and Stashkov, A.N., Definition of magnetostrictive sensitivity and structural-phase state of heat-treated Fe alloys by using MAE measurings, in Proc. 11th Eur. Conf. Nondestr. Test. (ECNDT 2014), Prague, Czech Republic, October 6–10, 2014.Google Scholar
  17. 17.
    Kostin, V.N., Vasilenko, O.N., Filatenkov, D.Y., Chekasina, Y.A., and Serbin, E.D., Magnetic and magnetoacoustic testing parameters of the stressed–strained state of carbon steels that were subjected to a cold plastic deformation and annealing, Russ. J. Nondestr. Test., 2015, vol. 51, no. 10, pp. 624–632.CrossRefGoogle Scholar
  18. 18.
    Piotrowski, L., Chmielewski, M., and Augustyniak, B., On the correlation between magnetoacoustic emission and magnetostriction dependence on the applied magnetic field, J. Magn. Magn. Mater., 2016, vol. 410, pp. 34–40.CrossRefGoogle Scholar
  19. 19.
    Jus, A., Nowak, P., and Ginko, O., Assessment of the magnetostrictive properties of the selected construction steel, Acta Phys. Pol., A, 2017, vol. 131, no. 4, pp. 1084–1086.Google Scholar
  20. 20.
    Kostin, V.N., Serbin, E.D., and Vasilenko, O.N., The interrelationships of magnetic and magneto acousticemission characteristics of heat-treated steels of various chemical composition, MATEC Web Conf., 2018, vol. 145, pp. 1–7.Google Scholar
  21. 21.
    Paes, V.Z.C., Varalda, J., and Mosca, D.H., Strain-induced magnetization changes and magneto-volume effects in ferromagnets with cubic symmetry, J. Magn. Magn. Mater., 2019, vol. 475, pp. 539–543.CrossRefGoogle Scholar
  22. 22.
    Borovik, E.S., Eremenko, V.V., and Milner, A.S., Lektsii po magnetizmu (Lectures on Magnetism), Moscow: Fizmatlit, 2005.Google Scholar
  23. 23.
    Weiping Ren, Ke Xu, and Peng Zhou, Fast measurement of magnetostriction coefficients for silicon steel strips using magnetostriction-based EMAT, Sensors, 2018, vol. 18, no. 12, article no. 4495, pp. 1–13.Google Scholar
  24. 24.
    Choe, G. and Megdal, B., High precision magnetostriction measurement employing the B-H looper bending method, IEEE Trans. Magn., 1999, vol. 35, pp. 3959–3961.CrossRefGoogle Scholar
  25. 25.
    Hill, C.B., Hendren, W.R., Bowman, R.M., McGeehin, P.K., Gubbins, M.A., and Venugopal, V.A., Whole wafer magnetostriction metrology for magnetic films and multilayers, Meas. Sci. Tech., 2013, vol. 24, pp. 1–6.CrossRefGoogle Scholar
  26. 26.
    Stashkov, A.N., Somova, V.M., Sazhina, E.Yu., Stashkova, L.A., and Nichipuruk, A.P., A magnetic method for determining the concentration of residual austenite in maraging steels, Russ. J. Nondestr. Test., 2011, vol. 47, no. 12, pp. 810–814. Pp. 36-42.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations