Skip to main content
Log in

A Mathematical Model of Digital Linear Tomography

  • RADIATION METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A mathematical model of digital linear tomography has been developed that takes into account the geometrical parameters of the scheme of testing, the depth of the layer of interest, the maximum energy of X-rays, the design of the digital detector, and the digit capacity of the analog-to-digital converter. The mathematical model is implemented in the MathCad software for engineering calculations. The results of a computational experiment are presented that confirm the possibility of producing the image of a layer with significantly reduced interference from images of other layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Glasser, O., WC Roentgen and the discovery of the Roentgen rays, AJR, Am. J. Roentgenol., 1995, vol. 165, no. 5, pp. 1033–1040.

    Article  Google Scholar 

  2. Goodman, P.C., The new light: discovery and introduction of the X-ray, AJR, Am. J. Roentgenol., 1995, vol. 165, no. 5, pp. 1041–1045.

    Article  Google Scholar 

  3. Singh, R., The Nobel Laureate WC Roentgen and his X-Rays, Indian J. Hist. Sci., 2016, vol. 51, pp. 521–530.

    Google Scholar 

  4. Korner, M., Weber, C.H., Wirth, S., Pfeifer, K.J., Reiser, M.F., and Treitl, M., Advances in digital radiography: physical principles and system overview, Radiographics, 2007, vol. 27, no. 3, pp. 675–686.

    Article  Google Scholar 

  5. Seynaeve, P.C. and Broos, J.I., The history of tomography, J. Belge Radiol., 1995, vol. 78, no. 5, pp. 284–288.

    Google Scholar 

  6. Bocage, M., Procede et dispositifs de radiographie sur plaque en movement, Franz Patentschrift, 1922, vol. 536, p. 464.

    Google Scholar 

  7. Friedland, G.W. and Thurber, B.D., The birth of CT, AJR, Am. J. Roentgenol., 1996, vol. 167, no. 6, pp. 1365–1370.

    Article  Google Scholar 

  8. Kalender, W.A., Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, Publicis Corp. Publ., 2005, 2nd Ed.

    Google Scholar 

  9. Dobbins, J.T., Tomosynthesis imaging: at a translational crossroads, Med. Phys., 2009, vol. 36, no. 6, part 1, pp. 1956–1967.

  10. Nikitin, M.M. and Ratobyl’skii, G.V., Digital tomosynthesis in the diagnosis and monitoring of the effectiveness of treatment of respiratory tuberculosis (literature review), Med. Vizualizatsiya, 2016, no. 3, pp. 95–102.

  11. Nevgasymyi, A.A., Miroshnichenko, N.S., and Miroshnichenko, S.I., Modification of the digital radiographic units with the linear tomography mode to units with the tomosynthesis mode, in 38th Int. Conf. Electron. Nanotechnol. (ELNANO), IEEE, 2018, pp. 402–405.

  12. Senchurov, S. and Motolyga, O., The enhancement of the linear X-Ray tomography with digital tomosynthesis algorithms, in XXXIII Int. Sci. Conf. (ELNANO), IEEE, 2013, pp. 319–321.

  13. Gomi, T., Hirano, H., Nakajima, M., and Umeda, T., X-ray digital linear tomosynthesis imaging, J. Biomed. Sci. Eng., 2011, vol. 4, no. 6, pp. 443–453.

    Article  Google Scholar 

  14. Dobbins III, J.T. and Godfrey, D.J., Digital X-ray tomosynthesis: current state of the art and clinical potential, Phys. Med. Biol., 2003, vol. 48, no. 19, pp. R65–R106.

    Article  Google Scholar 

  15. Kanter, B.M., Artemiev, B.V., Vladimirov, L.V., and Artemyev, I.B., Challenges in X-ray medical diagnosis, Biomed. Eng., 2017, vol. 50, no. 6, pp. 410–415.

    Article  Google Scholar 

  16. Wakimoto, K., Blunt, J., Carlos, C., Monteiro, P.J., Ostertag, C.P., and Albert, R., Digital laminography assessment of the damage in concrete exposed to freezing temperatures, Cem. Concr. Res., 2008, vol. 38, no. 10, pp. 1232–1245.

    Article  Google Scholar 

  17. Shi, X., Fu, J., Wang, J., Yuan, Q., Huang, W., Zhang, K., Zhu, P., and Jiang, B., Development of synchrotron radiation computed laminography for plate-shell structures, Sel. Pap. Chin. Soc. Opt. Eng. Conf. held October and November 2016, Int. Soc. Opt. Photonics, 2017, vol. 10255, article no. 102551M.

  18. Tada, M. and Matsui, H., Computed laminography XAFS/XAFS Techniques for Catalysts, Nanomaterials, and Surfaces, Springer, Cham, 2017, pp. 149–155.

    Google Scholar 

  19. Zhu, H., Roehrig, H., and Hayworth, M., Method for improving image quality in digital linear tomography, Image Vision Comput., 1986, vol. 4, no. 1, pp. 25–28.

    Article  Google Scholar 

  20. Voronkov, O.Yu. and Sinyutin, S.A., The method of obtaining radial sums in modeling installations for tomosynthesis based on the Bresenham’s line algorithm, Izv. Yuzhn. Fed. Univ. Tekh. Nauki, 2017, no. 6 (191), pp. 189–200.

  21. Ge, J., Chan, H.P., Sahiner, B., Zhang, Y., Wei, J., Hadjiiski, L.M., and Zhou, C., Digital tomosynthesis mammography: Intra-and interplane artifact reduction for high-contrast objects on reconstructed slices using a priori 3D geometrical information, Med. Imaging 2007: Image Process., Int. Soc. Opt. Photonics, 2007, vol. 6512, article no. 65124Q.

  22. Buzzi, A.E. and Suárez, M.V., Tomografía lineal: nacimiento, gloria y ocaso de un método, Revista Argentina de Radiología, 2013, vol. 77, no. 3, pp. 236–244.

    Article  Google Scholar 

  23. Gondrom, S., Zhou, J., Maisl, M., Reiter, H., Kröning, M., and Arnold, W., X-ray computed laminography: an approach of computed tomography for applications with limited access, Nucl. Eng. Des., 1999, vol. 190, nos. 1–2, pp. 141–147.

  24. Udod, V.A., Osipov, S.P., and Wang, Y., The mathematical model of image, generated by scanning digital radiography system, IOP Conf. Ser.: Mater. Sci. Eng., IOP Publ., 2017, vol. 168, no. 1, article no. 012042.

  25. Ewert, U., Baranov, V. A., and Borchardt, K., Cross-sectional imaging of building elements by new non-linear tomosynthesis techniques using imaging plates and 60Co radiation, NDT & E Int., 1997, vol. 30, no. 4, pp. 243–248.

    Article  Google Scholar 

  26. Kούκου, B., Methodology development for breast cancer diagnosis using dual energy X-rays and digital tomosynthesis, Doct. Dissertation, Rio-Patras, Greece: Univ. Patras, 2017.

  27. Gomi, T., Sakai, R., Goto, M., Hara, H., and Watanabe, Y., Development of a novel algorithm for metal artifact reduction in digital tomosynthesis using projection-based dual-energy material decomposition for arthroplasty: A phantom study, Phys. Med., 2018, vol. 53, pp. 4–16.

    Article  Google Scholar 

Download references

Funding

This study was conducted at Tomsk Polytechnic University as part of a grant from the Competitiveness Enhancement Program of Tomsk Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. P. Osipov or S. V. Chakhlov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, S.P., Usachev, E.Y., Chakhlov, S.V. et al. A Mathematical Model of Digital Linear Tomography. Russ J Nondestruct Test 55, 407–417 (2019). https://doi.org/10.1134/S1061830919050085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830919050085

Navigation