Russian Journal of Nondestructive Testing

, Volume 55, Issue 5, pp 407–417 | Cite as

A Mathematical Model of Digital Linear Tomography

  • S. P. OsipovEmail author
  • E. Yu. Usachev
  • S. V. ChakhlovEmail author
  • S. A. Schetinkin
  • A. A. Manushkin
  • O. S. Osipov
  • N. A. Sergeeva


A mathematical model of digital linear tomography has been developed that takes into account the geometrical parameters of the scheme of testing, the depth of the layer of interest, the maximum energy of X-rays, the design of the digital detector, and the digit capacity of the analog-to-digital converter. The mathematical model is implemented in the MathCad software for engineering calculations. The results of a computational experiment are presented that confirm the possibility of producing the image of a layer with significantly reduced interference from images of other layers.

Keywords: X-rays digital radiography digital implementation of linear tomography layer image imposition of shadows of fragments 



This study was conducted at Tomsk Polytechnic University as part of a grant from the Competitiveness Enhancement Program of Tomsk Polytechnic University.


  1. 1.
    Glasser, O., WC Roentgen and the discovery of the Roentgen rays, AJR, Am. J. Roentgenol., 1995, vol. 165, no. 5, pp. 1033–1040.CrossRefGoogle Scholar
  2. 2.
    Goodman, P.C., The new light: discovery and introduction of the X-ray, AJR, Am. J. Roentgenol., 1995, vol. 165, no. 5, pp. 1041–1045.CrossRefGoogle Scholar
  3. 3.
    Singh, R., The Nobel Laureate WC Roentgen and his X-Rays, Indian J. Hist. Sci., 2016, vol. 51, pp. 521–530.Google Scholar
  4. 4.
    Korner, M., Weber, C.H., Wirth, S., Pfeifer, K.J., Reiser, M.F., and Treitl, M., Advances in digital radiography: physical principles and system overview, Radiographics, 2007, vol. 27, no. 3, pp. 675–686.CrossRefGoogle Scholar
  5. 5.
    Seynaeve, P.C. and Broos, J.I., The history of tomography, J. Belge Radiol., 1995, vol. 78, no. 5, pp. 284–288.Google Scholar
  6. 6.
    Bocage, M., Procede et dispositifs de radiographie sur plaque en movement, Franz Patentschrift, 1922, vol. 536, p. 464.Google Scholar
  7. 7.
    Friedland, G.W. and Thurber, B.D., The birth of CT, AJR, Am. J. Roentgenol., 1996, vol. 167, no. 6, pp. 1365–1370.CrossRefGoogle Scholar
  8. 8.
    Kalender, W.A., Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, Publicis Corp. Publ., 2005, 2nd Ed.Google Scholar
  9. 9.
    Dobbins, J.T., Tomosynthesis imaging: at a translational crossroads, Med. Phys., 2009, vol. 36, no. 6, part 1, pp. 1956–1967.Google Scholar
  10. 10.
    Nikitin, M.M. and Ratobyl’skii, G.V., Digital tomosynthesis in the diagnosis and monitoring of the effectiveness of treatment of respiratory tuberculosis (literature review), Med. Vizualizatsiya, 2016, no. 3, pp. 95–102.Google Scholar
  11. 11.
    Nevgasymyi, A.A., Miroshnichenko, N.S., and Miroshnichenko, S.I., Modification of the digital radiographic units with the linear tomography mode to units with the tomosynthesis mode, in 38th Int. Conf. Electron. Nanotechnol. (ELNANO), IEEE, 2018, pp. 402–405.Google Scholar
  12. 12.
    Senchurov, S. and Motolyga, O., The enhancement of the linear X-Ray tomography with digital tomosynthesis algorithms, in XXXIII Int. Sci. Conf. (ELNANO), IEEE, 2013, pp. 319–321.Google Scholar
  13. 13.
    Gomi, T., Hirano, H., Nakajima, M., and Umeda, T., X-ray digital linear tomosynthesis imaging, J. Biomed. Sci. Eng., 2011, vol. 4, no. 6, pp. 443–453.CrossRefGoogle Scholar
  14. 14.
    Dobbins III, J.T. and Godfrey, D.J., Digital X-ray tomosynthesis: current state of the art and clinical potential, Phys. Med. Biol., 2003, vol. 48, no. 19, pp. R65–R106.CrossRefGoogle Scholar
  15. 15.
    Kanter, B.M., Artemiev, B.V., Vladimirov, L.V., and Artemyev, I.B., Challenges in X-ray medical diagnosis, Biomed. Eng., 2017, vol. 50, no. 6, pp. 410–415.CrossRefGoogle Scholar
  16. 16.
    Wakimoto, K., Blunt, J., Carlos, C., Monteiro, P.J., Ostertag, C.P., and Albert, R., Digital laminography assessment of the damage in concrete exposed to freezing temperatures, Cem. Concr. Res., 2008, vol. 38, no. 10, pp. 1232–1245.CrossRefGoogle Scholar
  17. 17.
    Shi, X., Fu, J., Wang, J., Yuan, Q., Huang, W., Zhang, K., Zhu, P., and Jiang, B., Development of synchrotron radiation computed laminography for plate-shell structures, Sel. Pap. Chin. Soc. Opt. Eng. Conf. held October and November 2016, Int. Soc. Opt. Photonics, 2017, vol. 10255, article no. 102551M.Google Scholar
  18. 18.
    Tada, M. and Matsui, H., Computed laminography XAFS/XAFS Techniques for Catalysts, Nanomaterials, and Surfaces, Springer, Cham, 2017, pp. 149–155.Google Scholar
  19. 19.
    Zhu, H., Roehrig, H., and Hayworth, M., Method for improving image quality in digital linear tomography, Image Vision Comput., 1986, vol. 4, no. 1, pp. 25–28.CrossRefGoogle Scholar
  20. 20.
    Voronkov, O.Yu. and Sinyutin, S.A., The method of obtaining radial sums in modeling installations for tomosynthesis based on the Bresenham’s line algorithm, Izv. Yuzhn. Fed. Univ. Tekh. Nauki, 2017, no. 6 (191), pp. 189–200.Google Scholar
  21. 21.
    Ge, J., Chan, H.P., Sahiner, B., Zhang, Y., Wei, J., Hadjiiski, L.M., and Zhou, C., Digital tomosynthesis mammography: Intra-and interplane artifact reduction for high-contrast objects on reconstructed slices using a priori 3D geometrical information, Med. Imaging 2007: Image Process., Int. Soc. Opt. Photonics, 2007, vol. 6512, article no. 65124Q.Google Scholar
  22. 22.
    Buzzi, A.E. and Suárez, M.V., Tomografía lineal: nacimiento, gloria y ocaso de un método, Revista Argentina de Radiología, 2013, vol. 77, no. 3, pp. 236–244.CrossRefGoogle Scholar
  23. 23.
    Gondrom, S., Zhou, J., Maisl, M., Reiter, H., Kröning, M., and Arnold, W., X-ray computed laminography: an approach of computed tomography for applications with limited access, Nucl. Eng. Des., 1999, vol. 190, nos. 1–2, pp. 141–147.Google Scholar
  24. 24.
    Udod, V.A., Osipov, S.P., and Wang, Y., The mathematical model of image, generated by scanning digital radiography system, IOP Conf. Ser.: Mater. Sci. Eng., IOP Publ., 2017, vol. 168, no. 1, article no. 012042.Google Scholar
  25. 25.
    Ewert, U., Baranov, V. A., and Borchardt, K., Cross-sectional imaging of building elements by new non-linear tomosynthesis techniques using imaging plates and 60Co radiation, NDT & E Int., 1997, vol. 30, no. 4, pp. 243–248.CrossRefGoogle Scholar
  26. 26.
    Kούκου, B., Methodology development for breast cancer diagnosis using dual energy X-rays and digital tomosynthesis, Doct. Dissertation, Rio-Patras, Greece: Univ. Patras, 2017.Google Scholar
  27. 27.
    Gomi, T., Sakai, R., Goto, M., Hara, H., and Watanabe, Y., Development of a novel algorithm for metal artifact reduction in digital tomosynthesis using projection-based dual-energy material decomposition for arthroplasty: A phantom study, Phys. Med., 2018, vol. 53, pp. 4–16.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. P. Osipov
    • 1
    Email author
  • E. Yu. Usachev
    • 2
  • S. V. Chakhlov
    • 1
    Email author
  • S. A. Schetinkin
    • 2
  • A. A. Manushkin
    • 2
  • O. S. Osipov
    • 3
  • N. A. Sergeeva
    • 1
  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.MIREA—Russian Technological UniversityMoscowRussia
  3. 3.Solveig MultimediaTomskRussia

Personalised recommendations