Analyzing the Accuracy of a Device for Controlling the Position of a Rotating Plane


Issues of estimating the instrumental errors of a device for in-process control of the position of a rotating plane, based on analyzing the coordinates of the points on the trajectory of movement of a luminous mark in a rotating mirror are considered. The main dependences describing the trajectory of the luminous mark in the rotating mirror are provided, the schemes in which errors are formed are considered, some assessments of these errors are given, and the main components of the errors are highlighted. Based on the research, recommendations are given on choosing the parameters of a device that implements the control of the position of the rotating plane.

This is a preview of subscription content, access via your institution.


  1. 1.

    Ivanov, O.A., Korkin, V.B., Redkozubova, V.A., et al., Spetsial’nye pribory lkya lineino-uglovykh izmerenii (Special Devices for Linear-Angular Measurements), Tsidulko, F.V., Ed., Moscow: Izd-vo Standartov, 1983.

  2. 2.

    Pershin, V.A., Rementsov, A.N., Sapronov Yu.G., and Solov’ev, S.G., Tipazh i tekhynicheskaya ekspluatatsiya oborudovaniya dlya avtoservisov (Taxonomy and Technical Maintenance of Equipment for Car-Care Centers), Rostov-on-Don: Feniks, 2008.

    Google Scholar 

  3. 3.

    Anikst, D.A., Konstantinovich, K.M., and Meskin, I.V., Vysokotochnye uglovye izmereniya (High-Precision Angular Measurements), Yakushenkov, Yu.G., Ed., Moscow: Mashinostroenie, 1987.

  4. 4.

    Konyakhin, I.A. and Pankov, E.D., Trekhkoordinatnye opticheskie i optiko-elektronnye uglomery. Spravochnik (Triaxial Optical and Optoelectronic Goniometers. A Handbook), Moscow: Nedra, 1991.

    Google Scholar 

  5. 5.

    Konyakhin, I.A., Moiseeva, A.A., and Hoang Van Fong, Optoelectronic autocollimator for two-coordinate angular measurements, Izv. VUZov. Priborostr., 2016, vol. 59, no. 7, pp. 563–570.

    Article  Google Scholar 

  6. 6.

    GOST (State Standard) 13267-73. Rotating electrical machines and nonelectric ones directly connected to them. Rotation axis heights and control methods.

  7. 7.

    Kolesnichenko, S.V. and Afanas’eva, O.V., Theoretical aspects of the assessment of the technical level of electrotechnical facilities, Zap. Gorn. Inst., [S.l.] 2018, vol. 230, p. 167. ISSN 2541–9404. Cited June 12, 2018. doi doi 10.25515/pmi.2018.2.16710.25515/pmi.2018.2.167

    Google Scholar 

  8. 8.

    Guzevich, S.N., On the stereoscopic measurement method, Izv. VUZov. Priborostr., 2015, vol. 58, no. 7, pp. 543–549.

    Article  Google Scholar 

  9. 9.

    Song Zhang, High-resolution, real-time 3-D shape measurement, Abstr. Doct. Philos. (Mech. Eng.) Dissertation, Stony Brook Univ., 2005.

    Google Scholar 

  10. 10.

    Daniel, B., US Patent 5724128, G01B11/275, Measuring arrangements characterized by angles or tapers, 1995.

    Google Scholar 

  11. 11.

    Bosch FWA 9000. Cited April 22, 2018.

  12. 12.

    German Patent DE102012202054A1 G01B11/2755, Measuring arrangements characterized by angles or tapers; for testing wheel alignment for vehicles with photoelectric detection means, 2012.

  13. 13.

    Furferi, R., Governi, L., Volpe, Ya., and Carfagni, M., Design and assessment of a machine vision system for automatic vehicle wheel alignment, Int. J. Adv. Robotic Sy., 2013, vol. 10, 242:2013. Cited July 24, 2018.

    Google Scholar 

  14. 14.

    US Patent 2014/0219509 A1. Device and method for measuring the characteristic angles and dimensions of wheels, steering system and chassis of vehicles in general, 2012.

  15. 15.

    US Patent 0087241.23B2. Method and device for video measurement, 2014.

  16. 16.

    Potapov, A.I. and Syas’ko, V.A., Opticheskie metody i sredstva nerazrushayushchego kontrolya prirodnoi sredy, materialov sredy, materialov izdelii i konstruktsii. T. 4. Pribory opticheskogo kontrolya materialov i izdelii (Optical Methods and Means for Nondestructive Testing of Natural Environment, Environmental Materials, and Materials of Products and Structures. Vol. 4. Optical Control Devices for Materials and Products), St. Petersburg: Polytekhnika-Print, 2017.

    Google Scholar 

  17. 17.

    Makhov, V.E., Repin, O.S., and Potapov, A.I., Measurement of linear dimensions by technical coherent-light vision systems, Kontrol’ Diagn., 2014, no. 4, pp. 12–19.

    Article  Google Scholar 

  18. 18.

    Makhov, V.E., Potapov, A.I., and Shaldaev, S.E., Controlling geometric parameters of products using the light field method, Kontrol’ Diagn., 2017, no. 7, pp. 12–24.

    Article  Google Scholar 

  19. 19.

    Sarvin, A.A., Kul’chitskii, A.A., and Naumova, A.K., Opticheskie metody beskontaktnykh izmerenii lineinykh peremeshchenii (Optical Methods for Contactless Measurements of Linear Displacements), St. Petersburg: North-West Open Tech. Univ., 2011.

    Google Scholar 

  20. 20.

    Kul’chitskii, A.A. and Sarvin, A.A., Optoelectronic kinematic control of the position of the plane of rotation, in Mezhvuz. sb. Mashinostroenie i avtomatizatsiya proizvodstava (Interuniv. Coll. Machine Building and Production Automation), St. Petersburg: North-West Extramural Polytech. Univ., 1998, no. 8, pp. 86–89.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. I. Potapov.

Additional information

Original Russian Text © A.I. Potapov, A.A. Kul’chitskii, Ya.G. Smorodinskii, 2018, published in Defektoskopiya, 2018, No. 11, pp. 17–24.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Potapov, A.I., Kul’chitskii, A.A. & Smorodinskii, Y.G. Analyzing the Accuracy of a Device for Controlling the Position of a Rotating Plane. Russ J Nondestruct Test 54, 757–764 (2018).

Download citation


  • optical control
  • position control
  • plane of rotation
  • mirror transducer
  • rotating single mirror