Russian Journal of Nondestructive Testing

, Volume 54, Issue 11, pp 757–764 | Cite as

Analyzing the Accuracy of a Device for Controlling the Position of a Rotating Plane

  • A. I. PotapovEmail author
  • A. A. Kul’chitskii
  • Ya. G. Smorodinskii
Optical Methods


Issues of estimating the instrumental errors of a device for in-process control of the position of a rotating plane, based on analyzing the coordinates of the points on the trajectory of movement of a luminous mark in a rotating mirror are considered. The main dependences describing the trajectory of the luminous mark in the rotating mirror are provided, the schemes in which errors are formed are considered, some assessments of these errors are given, and the main components of the errors are highlighted. Based on the research, recommendations are given on choosing the parameters of a device that implements the control of the position of the rotating plane.


optical control position control plane of rotation mirror transducer rotating single mirror 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ivanov, O.A., Korkin, V.B., Redkozubova, V.A., et al., Spetsial’nye pribory lkya lineino-uglovykh izmerenii (Special Devices for Linear-Angular Measurements), Tsidulko, F.V., Ed., Moscow: Izd-vo Standartov, 1983.Google Scholar
  2. 2.
    Pershin, V.A., Rementsov, A.N., Sapronov Yu.G., and Solov’ev, S.G., Tipazh i tekhynicheskaya ekspluatatsiya oborudovaniya dlya avtoservisov (Taxonomy and Technical Maintenance of Equipment for Car-Care Centers), Rostov-on-Don: Feniks, 2008.Google Scholar
  3. 3.
    Anikst, D.A., Konstantinovich, K.M., and Meskin, I.V., Vysokotochnye uglovye izmereniya (High-Precision Angular Measurements), Yakushenkov, Yu.G., Ed., Moscow: Mashinostroenie, 1987.Google Scholar
  4. 4.
    Konyakhin, I.A. and Pankov, E.D., Trekhkoordinatnye opticheskie i optiko-elektronnye uglomery. Spravochnik (Triaxial Optical and Optoelectronic Goniometers. A Handbook), Moscow: Nedra, 1991.Google Scholar
  5. 5.
    Konyakhin, I.A., Moiseeva, A.A., and Hoang Van Fong, Optoelectronic autocollimator for two-coordinate angular measurements, Izv. VUZov. Priborostr., 2016, vol. 59, no. 7, pp. 563–570.CrossRefGoogle Scholar
  6. 6.
    GOST (State Standard) 13267-73. Rotating electrical machines and nonelectric ones directly connected to them. Rotation axis heights and control methods.Google Scholar
  7. 7.
    Kolesnichenko, S.V. and Afanas’eva, O.V., Theoretical aspects of the assessment of the technical level of electrotechnical facilities, Zap. Gorn. Inst., [S.l.] 2018, vol. 230, p. 167. ISSN 2541–9404. Cited June 12, 2018. doi doi 10.25515/pmi.2018.2.16710.25515/pmi.2018.2.167Google Scholar
  8. 8.
    Guzevich, S.N., On the stereoscopic measurement method, Izv. VUZov. Priborostr., 2015, vol. 58, no. 7, pp. 543–549.CrossRefGoogle Scholar
  9. 9.
    Song Zhang, High-resolution, real-time 3-D shape measurement, Abstr. Doct. Philos. (Mech. Eng.) Dissertation, Stony Brook Univ., 2005.Google Scholar
  10. 10.
    Daniel, B., US Patent 5724128, G01B11/275, Measuring arrangements characterized by angles or tapers, 1995.Google Scholar
  11. 11.
  12. 12.
    German Patent DE102012202054A1 G01B11/2755, Measuring arrangements characterized by angles or tapers; for testing wheel alignment for vehicles with photoelectric detection means, 2012.Google Scholar
  13. 13.
    Furferi, R., Governi, L., Volpe, Ya., and Carfagni, M., Design and assessment of a machine vision system for automatic vehicle wheel alignment, Int. J. Adv. Robotic Sy., 2013, vol. 10, 242:2013. Cited July 24, 2018.Google Scholar
  14. 14.
    US Patent 2014/0219509 A1. Device and method for measuring the characteristic angles and dimensions of wheels, steering system and chassis of vehicles in general, 2012.Google Scholar
  15. 15.
    US Patent 0087241.23B2. Method and device for video measurement, 2014.Google Scholar
  16. 16.
    Potapov, A.I. and Syas’ko, V.A., Opticheskie metody i sredstva nerazrushayushchego kontrolya prirodnoi sredy, materialov sredy, materialov izdelii i konstruktsii. T. 4. Pribory opticheskogo kontrolya materialov i izdelii (Optical Methods and Means for Nondestructive Testing of Natural Environment, Environmental Materials, and Materials of Products and Structures. Vol. 4. Optical Control Devices for Materials and Products), St. Petersburg: Polytekhnika-Print, 2017.Google Scholar
  17. 17.
    Makhov, V.E., Repin, O.S., and Potapov, A.I., Measurement of linear dimensions by technical coherent-light vision systems, Kontrol’ Diagn., 2014, no. 4, pp. 12–19.CrossRefGoogle Scholar
  18. 18.
    Makhov, V.E., Potapov, A.I., and Shaldaev, S.E., Controlling geometric parameters of products using the light field method, Kontrol’ Diagn., 2017, no. 7, pp. 12–24.CrossRefGoogle Scholar
  19. 19.
    Sarvin, A.A., Kul’chitskii, A.A., and Naumova, A.K., Opticheskie metody beskontaktnykh izmerenii lineinykh peremeshchenii (Optical Methods for Contactless Measurements of Linear Displacements), St. Petersburg: North-West Open Tech. Univ., 2011.Google Scholar
  20. 20.
    Kul’chitskii, A.A. and Sarvin, A.A., Optoelectronic kinematic control of the position of the plane of rotation, in Mezhvuz. sb. Mashinostroenie i avtomatizatsiya proizvodstava (Interuniv. Coll. Machine Building and Production Automation), St. Petersburg: North-West Extramural Polytech. Univ., 1998, no. 8, pp. 86–89.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Potapov
    • 1
    Email author
  • A. A. Kul’chitskii
    • 1
  • Ya. G. Smorodinskii
    • 2
    • 3
  1. 1.St. Petersburg Mining UniversitySt. PetersburgRussia
  2. 2.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  3. 3.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations