Advertisement

Russian Journal of Nondestructive Testing

, Volume 53, Issue 4, pp 295–303 | Cite as

Examining the Experience of Revealing Delayed Deformation Corrosion Cracking

  • A. N. Razygraev
  • N. P. Razygraev
  • I. A. Dikov
Acoustic Methods
  • 20 Downloads

Abstract

The problem of skipping iron-oxide–filled damages in the welding junctions between the collector and Dn1200 branch pipe of the PGV-1000 steam generator in a VVÉR-1000 reactor facility is considered. The mechanism of crack nucleation and development is described. A hypothesis that cracks filled with corrosion deposits exhibit minimum reflectivity has been proposed and confirmed. Results of theoretical research into transmission and reflection of ultrasonic waves in the presence of a thin layer of corrosion products surrounded by pearlitic steel are provided. The reflectances of longitudinal and transverse waves from corrosion damages have been calculated and proved the viability of the hypothesis.

Keywords

ultrasonic testing reflectance crack magnetite delayed deformation corrosion cracking (DDCC) PGV-1000 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zubchenko, A.S., Razygraev, N.P., Runov, A.E., et al., Topical issues in ultrasonic testing of directional anticorrosive coatings (Part I), Energomashinostroenie, 1988, no. 10, pp. 18–21.Google Scholar
  2. 2.
    Zubchenko, A.S., Razygraev, N.P., and Runov, A.E., Topical issues in ultrasonic testing of directional anticorrosive coatings (Part II), Energomashinostroenie, 1988, no. 11, pp. 23–27.Google Scholar
  3. 3.
    Zubchenko, A.S., Razygraev, N.P., and Runov, A.E., Assessing the production technology and quality criteria in ultrasonic testing of directional anticorrosive coatings, Energomashinostroenie, 1988, no. 12, pp. 16–20.Google Scholar
  4. 4.
    Aleshin, N.P., Knyazev, V.D., and Mogil’ner, L.Yu., Scattering of ultrasonic pulses on semitransparent flaws. Modeling by the finite element element, Defektoskopiya, 1989, no. 10, p. 3.Google Scholar
  5. 5.
    Akol'zin, P.A., Korroziya i zashchita metalla teploenergeticheskogo oborudovaniya (Corrosion and Protection of Metal in Heat-and-Power Engineering), Moscow: Energoizdat, 1982.Google Scholar
  6. 6.
    Kuzavko, Y.A. and Karpuk, M.M., Acoustic waves reflection and refraction on a liquid magnetoacoustic material boundary, Abstr. 17th Int. Congr. Acoust., Rome, September 2–7, 2001.Google Scholar
  7. 7.
    Reichmann, H.J. and Jacobsen, S.D., Sound velocities and elastic constants of ZnAl2O4 spinel and implications for spinel-elasticity systematics, Am. Mineral., 2006, vol. 91, pp. 1049–1054.CrossRefGoogle Scholar
  8. 8.
    Reichmann, H.J. and Jacobsen, S.D., High-pressure elasticity of a natural magnetite crystal, Am. Mineral., 2004, vol. 89, pp. 1061–1066.CrossRefGoogle Scholar
  9. 9.
    Brekhovski, L.M., Volny v sloistykh sredakh (Waves in Stratified Media), Moscow: Nauka, 1973.Google Scholar
  10. 10.
    Ermolov, I.N., Metody ul’trazvukovoi defektoskopii. Kurs Lektsii (A Lecture Course in Ultrasonic Nondestructive Testing), Moscow: MGI, 1966.Google Scholar
  11. 11.
    Ermolov, I.N., Vopilkin, A.Kh., and Badalyan, V.G., Raschety v ul’trazvukovoi defektoskopii. Kratkii spravochnik (A Quick Guide to Calculations in Ultrasonic Nondestructive Testing), Moscow: EKhO+, 2004.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. N. Razygraev
    • 1
  • N. P. Razygraev
    • 1
  • I. A. Dikov
    • 2
  1. 1.State Research Center of the Russian Federation CNIITMASHMoscowRussia
  2. 2.All-Russian Scientific Research Institute of Aviation MaterialsMoscowRussia

Personalised recommendations