Skip to main content
Log in

Localization of Reflectors in Plates by Ultrasonic Testing with Lamb Waves

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

An algorithm is suggested for localizing flaws in thin-walled objects based on the analysis of dispersion characteristics of Lamb waves. It is shown that applying the technique of determining the instantaneous signal frequency by means of wavelet transform makes it possible to reconstruct extensive sections of frequency dependences of the group delay time for different modes of Lamb waves. An extra merit of the proposed method is its high noise immunity. It has been established that an optimum choice of the frequency range is required to minimize the experimental error, namely, in order to minimize the inaccuracy in determining distance one should choose the dispersion-characteristic section where the group delay time is long as compared with its nominal value while its frequency variation is maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klyuev, V.V., Ermolov, I.N., and Lange, Yu.V., Nerazrushayushchii kontrol'. Spravochnik. V 7 t. T. 2. Ul’trazvukovoi kontrol' (Nondestructive Testing: a Handbook in 7 Vols. Vol. 2: Ultrasonic Testing), Moscow: Mashinostroenie, 2004.

    Google Scholar 

  2. Knor, G., Damage detection in CFRP plates by means of numerical modeling of Lamb waves propagation, Int. J. Res. Eng. Technol., 2014, vol. 3, no. 12, pp. 80–93.

    Article  Google Scholar 

  3. Xua, H., Xua, C., Lia, X., and Wang, L., Study on single mode Lamb wave interaction with defect of plate by fnite element model, Procedia Eng., 2011, vol. 15, pp. 5067–5072.

    Article  Google Scholar 

  4. Paget, C.A., Grondel, S., Levin, K., and Delebarre, C., Damage assessment in composites by Lamb waves and wavelet coefficients, Smart Mater. Struct., 2003, vol. 12, no. 3, pp. 393–402.

    Article  Google Scholar 

  5. Liua, X., Jiang, Z., and Yan, Z., Improvement of accuracy in damage localization using frequency slice wavelet transform, Shock Vib., 2012, vol. 19, no. 4, pp. 585–596.

    Article  Google Scholar 

  6. Souza, P. and Nobrega, E., A fault location method using Lamb waves and discrete wavelet transform, J. Braz. Soc. Mech. Sci. Eng, 2012, vol. XXXIV, no. 4, pp. 515–524.

    Article  Google Scholar 

  7. Legendre, S., Massicotte, D., Goyette, J., and Bose, T.K., Wavelet-transform-based method of analysis for Lamb-wave ultrasonic NDE signals, IEEE Trans. Instrum. Meas., 2000, vol. 49, no. 3, pp. 524–530.

    Article  Google Scholar 

  8. Chen, X., Gao, Y., and Bao, L., Lamb wave signal retrieval by wavelet ridge, J. Vibroeng., 2014, vol. 16, no. 1, pp. 464–476.

    Google Scholar 

  9. Ho, K.S., Billson, D.R., and Hutchins, D.A., Ultrasonic Lamb wave tomography using scanned EMATs and wavelet processing, Nondestr. Test. Eval., 2007, vol. 22, no. 1, pp. 19–34.

    Article  Google Scholar 

  10. Terent'ev, D.A. and Elizarov, S.V., Wavelet analysis of AE signals in thin-walled objects, Kontrol’ Diagn., 2008, no. 7, pp. 51–54.

    Google Scholar 

  11. Terent'ev, D.A., Bulygin, K.A., and Elizarov, S.V., Noise filtration and retrieval of Lamb modes in the oscillograms of AE signals using continuous wavelet transform, Kontrol’ Diagn., 2010, no. 4, pp. 66–68.

    Google Scholar 

  12. Niethammer, M., Jacobs, L.J., Qu, J., and Jarzynski, J., Time-frequency representation of Lamb waves using the reassigned spectrogram, J. Acoust. Soc. Am., 2000, vol. 107, no. 5, pp. 19–24.

    Article  Google Scholar 

  13. El Allami, M., Rhimini, H., Nassim, A., and Sidki, M., http://www.ejta.org

  14. Hayashi, Y., Ogawa, S., Cho, H., and Takemoto, M., Non-contact estimation of thickness and elastic properties of metallic foils by the wavelet transform of laser-generated Lamb waves, NDT&E Int., 1999, vol. 32, no. 1, pp. 21–27.

    Article  Google Scholar 

  15. Viktorov, I.A., Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike (Physical Foundations of Technical Applications of Ultrasonic Rayleigh and Lamb Waves), Moscow: Nauka, 1966.

    Google Scholar 

  16. Isakovich, M.A., Obshchaya akustika (General Acoustics), Moscow: Nauka, 1973.

    Google Scholar 

  17. Egorov, N.N. and Toom, K.E., Using surface and normal waves in ultrasonic nondestructive testing, Kontrol’ Diagn., 2004, no. 6, pp. 56–63.

    Google Scholar 

  18. Perov, D.V. and Rinkevich, A.B., Using wavelets for analyzing ultrasonic fields detected by a laser interferometer. Basic concepts of the wavelet analysis, Russ. J. Nondestr. Test., 2001, vol. 37, no. 12, pp. 879–888.

    Article  Google Scholar 

  19. Perov, D.V., Rinkevich, A.B., Smorodinskii, Ya.G., and Keller, B., Using wavelets for analyzing ultrasonic fields detected by a laser interferometer. Flaw detection and localization in an aluminum single-crystal, Russ. J. Nondestr. Test., 2001, vol. 37, no. 12, pp. 889–899.

    Article  Google Scholar 

  20. Astaf'eva, N.M., Wavelet analysis: theoretical basics and application examples, Usp. Fiz. Nauk, 1996, vol. 166, no. 11, pp. 1145–1170.

    Article  Google Scholar 

  21. Nemytova, O.V., Rinkevich, A.B., and Perov, D.V., Instantaneous frequency estimation used for the classification of echo signals from different reflectors, Russ. J. Nondestr. Test., 2012, vol. 48, no. 11, pp. 649–661.

    Article  Google Scholar 

  22. Vainshtein, L.A. and Vakman, D.E., Razdelenie chastot v teorii kolebanii i voln (Frequency Separation in the Theory of Vibrations and Waves), Moscow: Nauka, 1983.

    Google Scholar 

  23. Perov, D.V., Determination of geometrical parameters of cylindrical bodies using dispersion characteristics of modes of elastic cylindrical waveguide, Russ. J. Nondestr. Test., 2000, vol. 36, no. 5, pp. 322–330.

    Article  Google Scholar 

  24. Rinkevich, A.B. and Perov, D.V., A wavelet analysis of acoustic fields and signals in ultrasonic nondestructive testing, Russ. J. Nondestr. Test., 2005, vol. 41, no. 2, pp. 93–101.

    Article  Google Scholar 

  25. Zhitluhina, J.V., Perov, D.V., Rinkevich, A.B., Smorodinsky, Y.G., Kröning, M., and Permikin, V.S., Characterization of steels with microdefects using a laser interferometry technique, Insight, 2007, vol. 49, no. 5, pp. 267–271.

    Article  Google Scholar 

  26. Zhitlukhina, Yu.V., Perov, D.V., Rinkevich, A.B., and Permikin, V.S., Detection of microflaws in metals via investigation of acoustic fields, Russ. J. Nondestr. Test., 2007, vol. 43, no. 10, pp. 658–669.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Perov.

Additional information

Original Russian Text © D.V. Perov, A.B. Rinkevich, 2017, published in Defektoskopiya, 2017, No. 4, pp. 27–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perov, D.V., Rinkevich, A.B. Localization of Reflectors in Plates by Ultrasonic Testing with Lamb Waves. Russ J Nondestruct Test 53, 265–278 (2017). https://doi.org/10.1134/S1061830917040064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830917040064

Keywords

Navigation