Advertisement

Russian Journal of Nondestructive Testing

, Volume 53, Issue 4, pp 265–278 | Cite as

Localization of Reflectors in Plates by Ultrasonic Testing with Lamb Waves

  • D. V. Perov
  • A. B. Rinkevich
Acoustic Methods
  • 38 Downloads

Abstract

An algorithm is suggested for localizing flaws in thin-walled objects based on the analysis of dispersion characteristics of Lamb waves. It is shown that applying the technique of determining the instantaneous signal frequency by means of wavelet transform makes it possible to reconstruct extensive sections of frequency dependences of the group delay time for different modes of Lamb waves. An extra merit of the proposed method is its high noise immunity. It has been established that an optimum choice of the frequency range is required to minimize the experimental error, namely, in order to minimize the inaccuracy in determining distance one should choose the dispersion-characteristic section where the group delay time is long as compared with its nominal value while its frequency variation is maximum.

Keywords

ultrasonic testing thin-walled objects plates Lamb waves dispersion characteristics instantaneous frequency wavelet transform echo signal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klyuev, V.V., Ermolov, I.N., and Lange, Yu.V., Nerazrushayushchii kontrol'. Spravochnik. V 7 t. T. 2. Ul’trazvukovoi kontrol' (Nondestructive Testing: a Handbook in 7 Vols. Vol. 2: Ultrasonic Testing), Moscow: Mashinostroenie, 2004.Google Scholar
  2. 2.
    Knor, G., Damage detection in CFRP plates by means of numerical modeling of Lamb waves propagation, Int. J. Res. Eng. Technol., 2014, vol. 3, no. 12, pp. 80–93.CrossRefGoogle Scholar
  3. 3.
    Xua, H., Xua, C., Lia, X., and Wang, L., Study on single mode Lamb wave interaction with defect of plate by fnite element model, Procedia Eng., 2011, vol. 15, pp. 5067–5072.CrossRefGoogle Scholar
  4. 4.
    Paget, C.A., Grondel, S., Levin, K., and Delebarre, C., Damage assessment in composites by Lamb waves and wavelet coefficients, Smart Mater. Struct., 2003, vol. 12, no. 3, pp. 393–402.CrossRefGoogle Scholar
  5. 5.
    Liua, X., Jiang, Z., and Yan, Z., Improvement of accuracy in damage localization using frequency slice wavelet transform, Shock Vib., 2012, vol. 19, no. 4, pp. 585–596.CrossRefGoogle Scholar
  6. 6.
    Souza, P. and Nobrega, E., A fault location method using Lamb waves and discrete wavelet transform, J. Braz. Soc. Mech. Sci. Eng, 2012, vol. XXXIV, no. 4, pp. 515–524.CrossRefGoogle Scholar
  7. 7.
    Legendre, S., Massicotte, D., Goyette, J., and Bose, T.K., Wavelet-transform-based method of analysis for Lamb-wave ultrasonic NDE signals, IEEE Trans. Instrum. Meas., 2000, vol. 49, no. 3, pp. 524–530.CrossRefGoogle Scholar
  8. 8.
    Chen, X., Gao, Y., and Bao, L., Lamb wave signal retrieval by wavelet ridge, J. Vibroeng., 2014, vol. 16, no. 1, pp. 464–476.Google Scholar
  9. 9.
    Ho, K.S., Billson, D.R., and Hutchins, D.A., Ultrasonic Lamb wave tomography using scanned EMATs and wavelet processing, Nondestr. Test. Eval., 2007, vol. 22, no. 1, pp. 19–34.CrossRefGoogle Scholar
  10. 10.
    Terent'ev, D.A. and Elizarov, S.V., Wavelet analysis of AE signals in thin-walled objects, Kontrol’ Diagn., 2008, no. 7, pp. 51–54.Google Scholar
  11. 11.
    Terent'ev, D.A., Bulygin, K.A., and Elizarov, S.V., Noise filtration and retrieval of Lamb modes in the oscillograms of AE signals using continuous wavelet transform, Kontrol’ Diagn., 2010, no. 4, pp. 66–68.Google Scholar
  12. 12.
    Niethammer, M., Jacobs, L.J., Qu, J., and Jarzynski, J., Time-frequency representation of Lamb waves using the reassigned spectrogram, J. Acoust. Soc. Am., 2000, vol. 107, no. 5, pp. 19–24.CrossRefGoogle Scholar
  13. 13.
    El Allami, M., Rhimini, H., Nassim, A., and Sidki, M., http://www.ejta.orgGoogle Scholar
  14. 14.
    Hayashi, Y., Ogawa, S., Cho, H., and Takemoto, M., Non-contact estimation of thickness and elastic properties of metallic foils by the wavelet transform of laser-generated Lamb waves, NDT&E Int., 1999, vol. 32, no. 1, pp. 21–27.CrossRefGoogle Scholar
  15. 15.
    Viktorov, I.A., Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike (Physical Foundations of Technical Applications of Ultrasonic Rayleigh and Lamb Waves), Moscow: Nauka, 1966.Google Scholar
  16. 16.
    Isakovich, M.A., Obshchaya akustika (General Acoustics), Moscow: Nauka, 1973.Google Scholar
  17. 17.
    Egorov, N.N. and Toom, K.E., Using surface and normal waves in ultrasonic nondestructive testing, Kontrol’ Diagn., 2004, no. 6, pp. 56–63.Google Scholar
  18. 18.
    Perov, D.V. and Rinkevich, A.B., Using wavelets for analyzing ultrasonic fields detected by a laser interferometer. Basic concepts of the wavelet analysis, Russ. J. Nondestr. Test., 2001, vol. 37, no. 12, pp. 879–888.CrossRefGoogle Scholar
  19. 19.
    Perov, D.V., Rinkevich, A.B., Smorodinskii, Ya.G., and Keller, B., Using wavelets for analyzing ultrasonic fields detected by a laser interferometer. Flaw detection and localization in an aluminum single-crystal, Russ. J. Nondestr. Test., 2001, vol. 37, no. 12, pp. 889–899.CrossRefGoogle Scholar
  20. 20.
    Astaf'eva, N.M., Wavelet analysis: theoretical basics and application examples, Usp. Fiz. Nauk, 1996, vol. 166, no. 11, pp. 1145–1170.CrossRefGoogle Scholar
  21. 21.
    Nemytova, O.V., Rinkevich, A.B., and Perov, D.V., Instantaneous frequency estimation used for the classification of echo signals from different reflectors, Russ. J. Nondestr. Test., 2012, vol. 48, no. 11, pp. 649–661.CrossRefGoogle Scholar
  22. 22.
    Vainshtein, L.A. and Vakman, D.E., Razdelenie chastot v teorii kolebanii i voln (Frequency Separation in the Theory of Vibrations and Waves), Moscow: Nauka, 1983.Google Scholar
  23. 23.
    Perov, D.V., Determination of geometrical parameters of cylindrical bodies using dispersion characteristics of modes of elastic cylindrical waveguide, Russ. J. Nondestr. Test., 2000, vol. 36, no. 5, pp. 322–330.CrossRefGoogle Scholar
  24. 24.
    Rinkevich, A.B. and Perov, D.V., A wavelet analysis of acoustic fields and signals in ultrasonic nondestructive testing, Russ. J. Nondestr. Test., 2005, vol. 41, no. 2, pp. 93–101.CrossRefGoogle Scholar
  25. 25.
    Zhitluhina, J.V., Perov, D.V., Rinkevich, A.B., Smorodinsky, Y.G., Kröning, M., and Permikin, V.S., Characterization of steels with microdefects using a laser interferometry technique, Insight, 2007, vol. 49, no. 5, pp. 267–271.CrossRefGoogle Scholar
  26. 26.
    Zhitlukhina, Yu.V., Perov, D.V., Rinkevich, A.B., and Permikin, V.S., Detection of microflaws in metals via investigation of acoustic fields, Russ. J. Nondestr. Test., 2007, vol. 43, no. 10, pp. 658–669.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Mikheev Institute of Physics of Metals, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations