Skip to main content
Log in

Theoretical Aspects of Applying Lamb Waves in Nondestructive Testing of Anisotropic Media

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Theoretical aspects of applying Lamb waves to nondestructive testing of layered anisotropic media are considered. Propagation of Lamb waves is analyzed using a six-dimensional complex Cauchy formalism that allows one to obtain a closed-form equation for determining the dispersion of Lamb waves in media with arbitrary elastic anisotropy. The possibility for applying the higher modes of Lamb waves to nondestructive testing is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rayleigh, J.W., On the free vibrations of an infinite plate of homogeneous isotropic elastic matter, Proc. Math. Soc., London, 1889, vol. 20, p. 225–234.

    Google Scholar 

  2. Lamb, H., On the flexure of an elastic plate, Proc. Math. Soc., London, 1889, vol. 21, p. 70–90.

    Article  Google Scholar 

  3. Lamb, H., On waves in an elastic plate, Proc. Roy. Soc, 1917, vol. A93, pp. 114–128.

    Article  Google Scholar 

  4. Rayleigh, J.W., On wave propagating along the plane surface of an elastic solid, Proc. London Math. Soc., 1885, vol. 17, pp. 4–11.

    Article  Google Scholar 

  5. Mindlin, R.D., Waves and vibrations in isotropic elastic plates, in: The First Symp. Nav. Struct. Mech., 1958, Oxford: Pergamon Press, 1960.

    Google Scholar 

  6. Viktorov, I.A., Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike (Physical Foundations of Technical Applications of Ultrasonic Rayleigh and Lamb Waves), Moscow: Nauka, 1966.

    Google Scholar 

  7. Jeffreys, H., The surface waves of earthquakes, Geophys. J. Int., 1935, vol. 3, pp. 253–261.

    Article  Google Scholar 

  8. Gogoladze, V.G., Dispersion of Rayleigh waves in a layer, Tr. Seism. Inst. Akad. Nauk SSSR, 1947, vol. 119, pp. 27–38.

    Google Scholar 

  9. Wilson, J.T. and Baykal, O., On the North Atlantic basin as determined from Rayleigh wave dispersion, Bull. Seism. Soc. Am., 1948, vol. 38, pp. 41–53.

    Google Scholar 

  10. Dobrin, M.B., Dispersion in seismic surface waves, Geophys., 1951, vol. 16, pp. 63–80.

    Article  Google Scholar 

  11. Freedman, A., The variation, with the Poisson ratio, of Lamb modes in a free plate. I: General spectra, J. Sound Vib., 1990, vol. 137, pp. 209–230.

    Article  Google Scholar 

  12. Freedman, A., The variation, with the Poisson ratio, of Lamb modes in a free plate. II: At transitions and coincidence values, J. Sound Vib., 1990, vol. 137, pp. 231–247.

    Article  Google Scholar 

  13. Freedman, A., The variation, with the Poisson ratio, of Lamb modes in a free plate. III: Behavior of individual modes, J. Sound Vib., 1990, vol. 137, pp. 249–266.

    Article  Google Scholar 

  14. Zhu, Q. and Mayer, W.G., On the crossing points of Lamb wave velocity dispersion curves, J. Acoust. Soc. Am, 1993, vol. 93, no. 4, pp. 1893–1895.

    Article  Google Scholar 

  15. Stokes, G.G., On the theory of oscillatory waves, Trans. Cambridge Philos. Soc., 1847, vol. 8, pp. 441–455.

    Google Scholar 

  16. Rayleigh, J.W., On progressive waves, Proc. London Math. Soc., 1877, vol. 9, pp. 21–26.

    Article  Google Scholar 

  17. Rayleigh, J.W., Theory of Sound, Ulan Press, 2011.

    Google Scholar 

  18. Reynolds, O., On the rate of progression of groups of waves and the rate at which energy is transmitted by waves, Nature, 1877, vol. 16, pp. 343–344.

    Google Scholar 

  19. Sezawa, K. and Kanai, K., On the propagation of Rayleigh waves in dispersive elastic media, Bull. Earthquake Res. Inst., Univ. Tokyo, 1941, vol. 19, pp. 549–553.

    Google Scholar 

  20. Sato, Y., Study on surface waves. II: Velocity of surface waves propagated upon elastic plates, Bull. Earthquake Res. Inst., Univ. Tokyo, 1951, vol. 29, pp. 223–261.

    Google Scholar 

  21. Press, F. and Ewing, M., Theory of air-coupled flexural waves, J. Appl. Phys., 1951, vol. 22, pp. 892–899.

    Article  Google Scholar 

  22. Press, F. and Oliver, J., Model study of air-coupled surface waves, J. Acoust. Soc. Am., 1955, vol. 27, pp. 43–46.

    Article  Google Scholar 

  23. Tolstoy, I., Dispersion and simple harmonic sources in wave ducts, J. Acoust. Soc. Am., 1955, vol. 27, pp. 897–910.

    Article  Google Scholar 

  24. Tolstoy, I. and Usdin, E., Wave propagation in elastic plates: low and high mode dispersion, J. Acoust. Soc. Am., 1957, vol. 29, pp. 37–42.

    Article  Google Scholar 

  25. Negishi, K., Existence of negative group velocities for Lamb waves, Jpn. J. Appl. Phys., 1987, vol. 26, nos. Suppl. 26-1, pp. 171–173.

    Article  Google Scholar 

  26. Biot, M.A., General theorems on the equivalence of group velocity and energy transport, Phys. Rev., 1957, vol. 105, pp. 1129–1137.

    Article  Google Scholar 

  27. Lowe, M.J.S., Plate waves for the NDT of diffusion bonded titanium, PhD thesis, Imperial College, UK, 1992.

    Google Scholar 

  28. Lyon, R.H., Response of an elastic plate to localized driving forces, J. Acoust. Soc. Am., 1955, vol. 27, pp. 259–265.

    Article  Google Scholar 

  29. Bobrovnitskii, Y.I., Orthogonality relations for Lamb waves, Sov. Acoust. Phys., 1973, vol. 18, no. 4, pp. 432–433.

    Google Scholar 

  30. Auld, B.A., Acoustic Fields and Waves in Solids, Malabar. Florida: Robert E. Krieger Publ. Co., 1990, vol. 2.

  31. Vovk, A.E. and Tyutekin, V.V., Excitation of normal waves in a planar elastic duct by forces given in its cross section, Tr. Akust. Inst., 1969, no. IX, pp. 5–26.

    Google Scholar 

  32. Duquenne, L., Moulin, E., Assaad, J., and Grondel, S., Transient modeling of Lamb waves generated in viscoelastic materials by surface bonded piezoelectric transducers, J. Acoust. Soc. Am., 2004, vol. 116, pp. 133–141.

    Article  Google Scholar 

  33. Kirrmann, P., On the completeness of Lamb modes, J. Elasticity, 1995, vol. 37, pp. 39–69.

    Article  Google Scholar 

  34. Zakharov, D.D., Orthogonality of 3D guided waves in viscoelastic laminates and far filed evaluation to a local acoustic source, Int. J. Solids Struct., 2008, vol. 45, p. 1788–1803.

    Article  Google Scholar 

  35. Pagneux, V. and Maurel, A., Determination of Lamb mode eigenvalues, J. Acoust. Soc. Am., 2001, vol. 110, pp. 1307–1314.

    Article  Google Scholar 

  36. Malischewsky, W., Orthonormalization of plane surface and body waves (in German), Gerlands Beitr. Geophys., 1970, vol. 79, pp. 468–474.

    Google Scholar 

  37. Stange, S. and Friederich, W., Guided wave propagation across sharp lateral heterogeneities: the complete wavefield at plane vertical discontinuities, Geophys. J. Int, 1992, vol. 109, pp. 183–190.

    Article  Google Scholar 

  38. Keldysh, M.V., On the completeness of eigenfunctions of some classes of non self-adjoint linear operators, Russ. Math. Surv., 1971, vol. 26, no. 4, pp. 15–44.

    Article  Google Scholar 

  39. Agmon, S., On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Commun. Pure Appl. Math., 1962, vol. 15, pp. 119–147.

    Article  Google Scholar 

  40. Lowe, M.J.S. and Diligent, O., Low-frequency refection characteristics of the s 0 Lamb wave from a rectangular notch in a plate, J. Acoust. Soc. Am., 2002, vol. 111, pp. 64–74.

    Article  Google Scholar 

  41. Brevdo, L., On the stability of Lamb modes, Acta Mech., 1996, vol. 117, pp. 71–80.

    Article  Google Scholar 

  42. Stoneley, R., The seismological implications of aelotropy in continental structures, Mon. Not. R. Astron. Soc., Geophys. Suppl., 1949, vol. 5, pp. 343–353.

    Article  Google Scholar 

  43. Musgrave, M.J.P., On the propagation of elastic waves in aeolotropic media. I. General principles, Proc. R. Soc. London A, 1954, vol. 226, pp. 339–355.

    Article  Google Scholar 

  44. Musgrave, M.J.P., On the propagation of elastic waves in aeolotropic media. II. Media of hexagonal symmetry, Proc. R. Soc. London A, 1954, vol. 226, pp. 356–366.

    Article  Google Scholar 

  45. Buchwald, V.T., Rayleigh waves in transversely isotropic media, Quart. J. Mech. Appl. Math., 1961, vol. 14, pp. 293–317.

    Article  Google Scholar 

  46. Stoneley, R., The propagation of surface elastic waves in a cubic crystal, Proc. R. Soc. London A, 1955, vol. 232, pp. 447–458.

    Article  Google Scholar 

  47. Miller, G.F. and Musgrave, M.J.P., On the propagation of elastic waves in aeolotropic media. III. Media of cubic symmetry, Proc. R. Soc. London A, 1956, vol. 236, pp. 352–383.

    Article  Google Scholar 

  48. Mitra, M., Propagation of elastic waves in an infnite plate of cylindrically aelotropic material, Z. Angew. Math. Phys., 1959, vol. 10, pp. 579–583.

    Article  Google Scholar 

  49. Anderson, D.L., Elastic wave propagation in layered anisotropic media, J. Geophys. Res., 1961, vol. 66, pp. 2953–2963.

    Article  Google Scholar 

  50. Solie, L.P. and Auld, B.A., Elastic waves in free anisotropic plates, J. Acoust. Soc. Am., 1973, vol. 54, pp. 50–65.

    Article  Google Scholar 

  51. Nayfeh, A.H. and Chimenti, D.E., Free wave propagation in plates of general anisotropic media, J. Appl. Mech., 1989, vol. 56, no. 4, pp. 881–886.

    Article  Google Scholar 

  52. Dayal, V. and Kinra, V.K., Leaky Lamb waves in an anisotropic plate. I: An exact solution and experiments, J. Acoust. Soc. Am., 1989, vol. 85, pp. 2268–2276.

    Article  Google Scholar 

  53. Ben-Menahem, A. and Sena, A.G., Seismic source theory in stratifed anisotropic media, J. Geophys. Res., 1990, vol. 95, no. B10, pp. 15.395–15.427.

    Article  Google Scholar 

  54. Liu, G.R., Tani, J., Watanabe, K., and Ohyoshi, T., Lamb wave propagation in anisotropic laminates, J. Appl. Mech., 1990, vol. 57, pp. 923–929.

    Article  Google Scholar 

  55. Lin, W. and Keer, L.M., A study of Lamb waves in anisotropic plates, J. Acoust. Soc. Am., 1992, vol. 92, pp. 888–894.

    Article  Google Scholar 

  56. Neau, G., Lamb waves in anisotropic viscoelastic plates. Study of the wave fronts and attenuation, PhD thesis, L’Universite de Bordeaux, 2003.

    Google Scholar 

  57. Neau, G., Deschamps, M., and Lowe, M.J.S., Group velocity of lamb waves in anisotropic plates: comparison between theory and experiment, In: Review of Progress in Quantitative NDED, New York: AIP, 2001, vol. 20.

  58. Wang, L. and Yuan, F.G., Group velocity and characteristic wave curves of Lamb waves in composites: modeling and experiments, Compos. Sci. Technol., 2007, vol. 67, pp. 1370–1384.

    Article  Google Scholar 

  59. Kuznetsov, S.V., Surface waves of non-Rayleigh type, Quart. Appl. Math., 2003, vol. 61, p. 575–582.

    Article  Google Scholar 

  60. Kuznetsov, S.V., Subsonic Lamb waves in anisotropic plates, Quart. Appl. Math., 2002, vol. 60, pp. 577–587.

    Article  Google Scholar 

  61. Markus, S.A., Low-frequency approximations for the zero modes of normal waves in anisotropic plates, Akust. Zh., 1987, vol. 33, pp. 1091–1095.

    Google Scholar 

  62. Al'shits, V.I. and Lyubimov, V.N., Abnormal dispersion of surface elastic waves in an anisotropic plate, Kristallografiya, 1988, vol. 33, pp. 279–285.

    Google Scholar 

  63. Stroh, A.N., Steady state problems in anisotropic elasticity, J. Math. Phys., 1962, vol. 41, pp. 77–103.

    Article  Google Scholar 

  64. Ingebrigtsen, K.A. and Tonning, A., Elastic surface waves in crystals, Phys. Rev, 1969, vol. 184, pp. 942–951.

    Article  Google Scholar 

  65. Barnett, D.M. and Lothe, J., Synthesis of the sextic and the integral formalism for dislocations, Greens functions, and surface waves in anisotropic elastic solids, Phys. Norv., 1973, vol. 7, pp. 13–19.

    Google Scholar 

  66. Chadwick, P. and Smith, G.D., Foundations of the theory of surface waves in anisotropic elastic materials, In; Advances in Applied Mechanics, New York: Academic Press, 1977, vol. 17.

  67. Ting, T.C.T. and Barnett, D.M., Classifcations of surface waves in anisotropic elastic materials, Wave Motion, 1997, vol. 26, pp. 207–218.

    Article  Google Scholar 

  68. Ting, T.C.T., On extraordinary semisimple matrix N(ν) for anisotropic elastic materials, Quart. Appl. Math., 1997, vol. 55, pp. 723–738.

    Article  Google Scholar 

  69. Fu, Y.B., Hamiltonian interpretation of the Stroh formalism in anisotropic elasticity, Proc. R. Soc. A, 2007, vol. 463, pp. 3073–3087.

    Article  Google Scholar 

  70. Tanuma, K., Stroh Formalism and Rayleigh Waves, Springer, 2010.

    Google Scholar 

  71. Shuvalov, A.L., On the theory of wave propagation in anisotropic plates, Proc. R. Soc. London. Ser. A, 2000, vol. 456, pp. 2197–2222.

    Article  Google Scholar 

  72. Alshits, V., Deschamps, M., and Maugin, G., Elastic waves in anisotropic plates: short-wavelength asymptotics of the dispersion branches Vn(k), Wave Motion, 2003, vol. 37, no. 3, pp. 273–292.

    Article  Google Scholar 

  73. Ting, T.C.T., Anisotropic Elasticity: Theory and Applications, New York: Oxford Univ. Press, 1996.

    Google Scholar 

  74. Kuznetsov, S.V., Love waves in stratifed monoclinic media, Quart. Appl. Math., 2004, vol. 62, pp. 749–766.

    Article  Google Scholar 

  75. Kuznetsov, S.V., SH-waves in laminated plates, Quart. Appl. Math., 2006, vol. 64, pp. 153–165.

    Article  Google Scholar 

  76. Kuznetsov, S.V., Love waves in nondestructive diagnostics of layered composites, Acoust. Phys., 2010, vol. 56, pp. 877–892.

    Article  Google Scholar 

  77. Gregory, R.D. and Gladwell, I., The refection of a symmetric Rayleigh-Lamb wave at the fixed or free edge of a plate, J. Elasticity, 1983, vol. 13, pp. 185–206.

    Article  Google Scholar 

  78. Aki, K. and Richards, P.G., Quantitative Seismology. Theory and Methods, New York: W.H. Freeman and Co., 1980.

    Google Scholar 

  79. Ben-Menahem, A. and Singh, S.J., Seismic Waves and Sources, Dover Publications, 2012.

    Google Scholar 

  80. Chapman, C., Fundamentals of Seismic Wave Propagation, New York: Cambridge Univ. Press, 2010.

    Google Scholar 

  81. Sheriff, R.E. and Geldart, R.P., Exploration Seismology, New York: Cambridge Univ. Press, 1995.

    Book  Google Scholar 

  82. Bergmann, L., Der Ultraschall, Zurich: S. Hirzel Verlag, 1949.

    Google Scholar 

  83. Viktorov, I.A., Ultrasonic Lamb waves: a review, Akust. Zh., 1965, vol. 11, pp. 1–18.

    Google Scholar 

  84. Doxbeck, M.A., Hussain, M.A., Rama, J., Abate, A., and Frankel, J., An algorithm for the determination of coating properties from laser generated and detected Rayleigh waves using wavelet analysis, Rev. Prog. QNDE, 2002, vol. 21, pp. 292–299.

    Google Scholar 

  85. Golubev, E.V., Gurevich, S.Yu., and Petrov, Yu.V., On the theory of Lamb wave excitation in metals by pulsed laser radiation, Acoust. Phys., 2011, vol. 57, pp. 620–626.

    Article  Google Scholar 

  86. Royer, D. and Dieulesaint, E., Elastic Waves in Solids 1. Free and Guided Propagation, New York: Springer, 2009.

    Google Scholar 

  87. Moler, C. and Loan, Ch.V., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review, 2003, vol. 45, pp. 1–46.

    Article  Google Scholar 

  88. Hartman, P., Ordinary Differential Equations, New York: SIAM, 2002.

    Book  Google Scholar 

  89. Pease, M.C., Methods of Matrix Algebra, London: Academic Press, 1965.

    Google Scholar 

  90. Dunkin, J.W., Computation of modal solutions in layered elastic media at high frequencies, Bull. Seism. Soc. Am., 1965, vol. 55, p. 335–358.

    Google Scholar 

  91. Lévesque, D. and Piche, L., A robust transfer matrix formulation for the ultrasonic response of multilayered absorbing media, J. Acoust. Soc., 1992, vol. 92, pp. 452–467.

    Article  Google Scholar 

  92. Castaings, M. and Hosten, B., Delta operator technique to improve the Thomson–Haskell method stability for propagation in multilayered anisotropic absorbing plate, J. Acoust. Soc. Am., 1994, vol. 95, pp. 1931–1941.

    Article  Google Scholar 

  93. Lowe, M.J.S., Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason. Eng., 1995, vol. 42, pp. 525–542.

    Article  Google Scholar 

  94. Wang, L. and Rokhlin, S.I., Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media, Ultrason., 2001, vol. 39, pp. 413–424.

    Article  Google Scholar 

  95. Bailey, D.H., A portable high performance multiprecision package, NASA RNR Tech. Rep., 1993.

    Google Scholar 

  96. Bailey, D.H., Automatic translation of Fortran programs to multiprecision, NASA RNR Tech. Rep., 1993.

    Google Scholar 

  97. Guo, C.Y. and Wheeler, L., Extreme Poisson’s ratios and related elastic crystal properties, J. Mech. Phys. Solids, 2006, vol. 54, pp. 690–707.

    Article  Google Scholar 

  98. Schecklman, S., Zurk, L.M., Henry, S., and Kniffin, G.P., http://dx.doi.org/ doi 10.1063/1.3561806

  99. Kulesh, M.A., Matveenko, V.P., and Shardakov, I.N., Propagation of surface elastic waves in the Cosserat medium, Acoust. Phys., 2006, vol. 52, no. 2, pp. 186–193.

    Article  Google Scholar 

  100. Kulesh, M.A., Grekova, E.F., and Shardakov, I.N., The problem of surface wave propagation in a reduced Cosserat medium, Acouts. Phys., 2009, vol. 55, no. 2, pp. 218–226.

    Google Scholar 

  101. Markov, M.G., Rayleigh wave propagation along the boundary of a non-Newtonian fluid-saturated porous medium, Acoust. Phys., 2006, vol. 52, no. 4, pp. 429–434.

    Article  Google Scholar 

  102. Bobrovnitskii, Yu.I., A Rayleigh-type wave at the plane interface of two homogeneous fluid half-spaces, Acouts. Phys., 2011, vol. 57, no. 5, p. 595–597.

    Google Scholar 

  103. Kuznetsov, S.V. and Terentjeva, E.O., Planar internal Lamb problem: waves in the epicentral zone of a vertical power source, Acoust. Phys., 2015, vol. 61, no. 3, pp. 356–367.

    Article  Google Scholar 

  104. Kuznetsov, S.V. and Terentjeva, E.O., Wave felds and domination regions for the interior Lamb problem, Mech. Solids, 2015, vol. 5, pp. 508–520.

    Article  Google Scholar 

  105. Sekerzh-Zenkovich, S.J., Ilyasov, H.H., Kravtsov, A.V., and Kuznetsov, S.V., Outer Lamb problem. Distributed harmonic surface loading, Mech. Solids, 2016, vol. 1, pp. 50–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ilyashenko.

Additional information

Original Russian Text © A.V. Ilyashenko, S.V. Kuznetsov, 2017, published in Defektoskopiya, 2017, No. 4, pp. 3–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyashenko, A.V., Kuznetsov, S.V. Theoretical Aspects of Applying Lamb Waves in Nondestructive Testing of Anisotropic Media. Russ J Nondestruct Test 53, 243–259 (2017). https://doi.org/10.1134/S1061830917040039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830917040039

Keywords

Navigation