Russian Journal of Nondestructive Testing

, Volume 53, Issue 4, pp 243–259 | Cite as

Theoretical Aspects of Applying Lamb Waves in Nondestructive Testing of Anisotropic Media

Acoustic Methods
  • 39 Downloads

Abstract

Theoretical aspects of applying Lamb waves to nondestructive testing of layered anisotropic media are considered. Propagation of Lamb waves is analyzed using a six-dimensional complex Cauchy formalism that allows one to obtain a closed-form equation for determining the dispersion of Lamb waves in media with arbitrary elastic anisotropy. The possibility for applying the higher modes of Lamb waves to nondestructive testing is noted.

Keywords

nondestructive testing Lamb wave anisotropy dispersion limit velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rayleigh, J.W., On the free vibrations of an infinite plate of homogeneous isotropic elastic matter, Proc. Math. Soc., London, 1889, vol. 20, p. 225–234.Google Scholar
  2. 2.
    Lamb, H., On the flexure of an elastic plate, Proc. Math. Soc., London, 1889, vol. 21, p. 70–90.CrossRefGoogle Scholar
  3. 3.
    Lamb, H., On waves in an elastic plate, Proc. Roy. Soc, 1917, vol. A93, pp. 114–128.CrossRefGoogle Scholar
  4. 4.
    Rayleigh, J.W., On wave propagating along the plane surface of an elastic solid, Proc. London Math. Soc., 1885, vol. 17, pp. 4–11.CrossRefGoogle Scholar
  5. 5.
    Mindlin, R.D., Waves and vibrations in isotropic elastic plates, in: The First Symp. Nav. Struct. Mech., 1958, Oxford: Pergamon Press, 1960.Google Scholar
  6. 6.
    Viktorov, I.A., Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike (Physical Foundations of Technical Applications of Ultrasonic Rayleigh and Lamb Waves), Moscow: Nauka, 1966.Google Scholar
  7. 7.
    Jeffreys, H., The surface waves of earthquakes, Geophys. J. Int., 1935, vol. 3, pp. 253–261.CrossRefGoogle Scholar
  8. 8.
    Gogoladze, V.G., Dispersion of Rayleigh waves in a layer, Tr. Seism. Inst. Akad. Nauk SSSR, 1947, vol. 119, pp. 27–38.Google Scholar
  9. 9.
    Wilson, J.T. and Baykal, O., On the North Atlantic basin as determined from Rayleigh wave dispersion, Bull. Seism. Soc. Am., 1948, vol. 38, pp. 41–53.Google Scholar
  10. 10.
    Dobrin, M.B., Dispersion in seismic surface waves, Geophys., 1951, vol. 16, pp. 63–80.CrossRefGoogle Scholar
  11. 11.
    Freedman, A., The variation, with the Poisson ratio, of Lamb modes in a free plate. I: General spectra, J. Sound Vib., 1990, vol. 137, pp. 209–230.CrossRefGoogle Scholar
  12. 12.
    Freedman, A., The variation, with the Poisson ratio, of Lamb modes in a free plate. II: At transitions and coincidence values, J. Sound Vib., 1990, vol. 137, pp. 231–247.CrossRefGoogle Scholar
  13. 13.
    Freedman, A., The variation, with the Poisson ratio, of Lamb modes in a free plate. III: Behavior of individual modes, J. Sound Vib., 1990, vol. 137, pp. 249–266.CrossRefGoogle Scholar
  14. 14.
    Zhu, Q. and Mayer, W.G., On the crossing points of Lamb wave velocity dispersion curves, J. Acoust. Soc. Am, 1993, vol. 93, no. 4, pp. 1893–1895.CrossRefGoogle Scholar
  15. 15.
    Stokes, G.G., On the theory of oscillatory waves, Trans. Cambridge Philos. Soc., 1847, vol. 8, pp. 441–455.Google Scholar
  16. 16.
    Rayleigh, J.W., On progressive waves, Proc. London Math. Soc., 1877, vol. 9, pp. 21–26.CrossRefGoogle Scholar
  17. 17.
    Rayleigh, J.W., Theory of Sound, Ulan Press, 2011.Google Scholar
  18. 18.
    Reynolds, O., On the rate of progression of groups of waves and the rate at which energy is transmitted by waves, Nature, 1877, vol. 16, pp. 343–344.Google Scholar
  19. 19.
    Sezawa, K. and Kanai, K., On the propagation of Rayleigh waves in dispersive elastic media, Bull. Earthquake Res. Inst., Univ. Tokyo, 1941, vol. 19, pp. 549–553.Google Scholar
  20. 20.
    Sato, Y., Study on surface waves. II: Velocity of surface waves propagated upon elastic plates, Bull. Earthquake Res. Inst., Univ. Tokyo, 1951, vol. 29, pp. 223–261.Google Scholar
  21. 21.
    Press, F. and Ewing, M., Theory of air-coupled flexural waves, J. Appl. Phys., 1951, vol. 22, pp. 892–899.CrossRefGoogle Scholar
  22. 22.
    Press, F. and Oliver, J., Model study of air-coupled surface waves, J. Acoust. Soc. Am., 1955, vol. 27, pp. 43–46.CrossRefGoogle Scholar
  23. 23.
    Tolstoy, I., Dispersion and simple harmonic sources in wave ducts, J. Acoust. Soc. Am., 1955, vol. 27, pp. 897–910.CrossRefGoogle Scholar
  24. 24.
    Tolstoy, I. and Usdin, E., Wave propagation in elastic plates: low and high mode dispersion, J. Acoust. Soc. Am., 1957, vol. 29, pp. 37–42.CrossRefGoogle Scholar
  25. 25.
    Negishi, K., Existence of negative group velocities for Lamb waves, Jpn. J. Appl. Phys., 1987, vol. 26, nos. Suppl. 26-1, pp. 171–173.CrossRefGoogle Scholar
  26. 26.
    Biot, M.A., General theorems on the equivalence of group velocity and energy transport, Phys. Rev., 1957, vol. 105, pp. 1129–1137.CrossRefGoogle Scholar
  27. 27.
    Lowe, M.J.S., Plate waves for the NDT of diffusion bonded titanium, PhD thesis, Imperial College, UK, 1992.Google Scholar
  28. 28.
    Lyon, R.H., Response of an elastic plate to localized driving forces, J. Acoust. Soc. Am., 1955, vol. 27, pp. 259–265.CrossRefGoogle Scholar
  29. 29.
    Bobrovnitskii, Y.I., Orthogonality relations for Lamb waves, Sov. Acoust. Phys., 1973, vol. 18, no. 4, pp. 432–433.Google Scholar
  30. 30.
    Auld, B.A., Acoustic Fields and Waves in Solids, Malabar. Florida: Robert E. Krieger Publ. Co., 1990, vol. 2.Google Scholar
  31. 31.
    Vovk, A.E. and Tyutekin, V.V., Excitation of normal waves in a planar elastic duct by forces given in its cross section, Tr. Akust. Inst., 1969, no. IX, pp. 5–26.Google Scholar
  32. 32.
    Duquenne, L., Moulin, E., Assaad, J., and Grondel, S., Transient modeling of Lamb waves generated in viscoelastic materials by surface bonded piezoelectric transducers, J. Acoust. Soc. Am., 2004, vol. 116, pp. 133–141.CrossRefGoogle Scholar
  33. 33.
    Kirrmann, P., On the completeness of Lamb modes, J. Elasticity, 1995, vol. 37, pp. 39–69.CrossRefGoogle Scholar
  34. 34.
    Zakharov, D.D., Orthogonality of 3D guided waves in viscoelastic laminates and far filed evaluation to a local acoustic source, Int. J. Solids Struct., 2008, vol. 45, p. 1788–1803.CrossRefGoogle Scholar
  35. 35.
    Pagneux, V. and Maurel, A., Determination of Lamb mode eigenvalues, J. Acoust. Soc. Am., 2001, vol. 110, pp. 1307–1314.CrossRefGoogle Scholar
  36. 36.
    Malischewsky, W., Orthonormalization of plane surface and body waves (in German), Gerlands Beitr. Geophys., 1970, vol. 79, pp. 468–474.Google Scholar
  37. 37.
    Stange, S. and Friederich, W., Guided wave propagation across sharp lateral heterogeneities: the complete wavefield at plane vertical discontinuities, Geophys. J. Int, 1992, vol. 109, pp. 183–190.CrossRefGoogle Scholar
  38. 38.
    Keldysh, M.V., On the completeness of eigenfunctions of some classes of non self-adjoint linear operators, Russ. Math. Surv., 1971, vol. 26, no. 4, pp. 15–44.CrossRefGoogle Scholar
  39. 39.
    Agmon, S., On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Commun. Pure Appl. Math., 1962, vol. 15, pp. 119–147.CrossRefGoogle Scholar
  40. 40.
    Lowe, M.J.S. and Diligent, O., Low-frequency refection characteristics of the s 0 Lamb wave from a rectangular notch in a plate, J. Acoust. Soc. Am., 2002, vol. 111, pp. 64–74.CrossRefGoogle Scholar
  41. 41.
    Brevdo, L., On the stability of Lamb modes, Acta Mech., 1996, vol. 117, pp. 71–80.CrossRefGoogle Scholar
  42. 42.
    Stoneley, R., The seismological implications of aelotropy in continental structures, Mon. Not. R. Astron. Soc., Geophys. Suppl., 1949, vol. 5, pp. 343–353.CrossRefGoogle Scholar
  43. 43.
    Musgrave, M.J.P., On the propagation of elastic waves in aeolotropic media. I. General principles, Proc. R. Soc. London A, 1954, vol. 226, pp. 339–355.CrossRefGoogle Scholar
  44. 44.
    Musgrave, M.J.P., On the propagation of elastic waves in aeolotropic media. II. Media of hexagonal symmetry, Proc. R. Soc. London A, 1954, vol. 226, pp. 356–366.CrossRefGoogle Scholar
  45. 45.
    Buchwald, V.T., Rayleigh waves in transversely isotropic media, Quart. J. Mech. Appl. Math., 1961, vol. 14, pp. 293–317.CrossRefGoogle Scholar
  46. 46.
    Stoneley, R., The propagation of surface elastic waves in a cubic crystal, Proc. R. Soc. London A, 1955, vol. 232, pp. 447–458.CrossRefGoogle Scholar
  47. 47.
    Miller, G.F. and Musgrave, M.J.P., On the propagation of elastic waves in aeolotropic media. III. Media of cubic symmetry, Proc. R. Soc. London A, 1956, vol. 236, pp. 352–383.CrossRefGoogle Scholar
  48. 48.
    Mitra, M., Propagation of elastic waves in an infnite plate of cylindrically aelotropic material, Z. Angew. Math. Phys., 1959, vol. 10, pp. 579–583.CrossRefGoogle Scholar
  49. 49.
    Anderson, D.L., Elastic wave propagation in layered anisotropic media, J. Geophys. Res., 1961, vol. 66, pp. 2953–2963.CrossRefGoogle Scholar
  50. 50.
    Solie, L.P. and Auld, B.A., Elastic waves in free anisotropic plates, J. Acoust. Soc. Am., 1973, vol. 54, pp. 50–65.CrossRefGoogle Scholar
  51. 51.
    Nayfeh, A.H. and Chimenti, D.E., Free wave propagation in plates of general anisotropic media, J. Appl. Mech., 1989, vol. 56, no. 4, pp. 881–886.CrossRefGoogle Scholar
  52. 52.
    Dayal, V. and Kinra, V.K., Leaky Lamb waves in an anisotropic plate. I: An exact solution and experiments, J. Acoust. Soc. Am., 1989, vol. 85, pp. 2268–2276.CrossRefGoogle Scholar
  53. 53.
    Ben-Menahem, A. and Sena, A.G., Seismic source theory in stratifed anisotropic media, J. Geophys. Res., 1990, vol. 95, no. B10, pp. 15.395–15.427.CrossRefGoogle Scholar
  54. 54.
    Liu, G.R., Tani, J., Watanabe, K., and Ohyoshi, T., Lamb wave propagation in anisotropic laminates, J. Appl. Mech., 1990, vol. 57, pp. 923–929.CrossRefGoogle Scholar
  55. 55.
    Lin, W. and Keer, L.M., A study of Lamb waves in anisotropic plates, J. Acoust. Soc. Am., 1992, vol. 92, pp. 888–894.CrossRefGoogle Scholar
  56. 56.
    Neau, G., Lamb waves in anisotropic viscoelastic plates. Study of the wave fronts and attenuation, PhD thesis, L’Universite de Bordeaux, 2003.Google Scholar
  57. 57.
    Neau, G., Deschamps, M., and Lowe, M.J.S., Group velocity of lamb waves in anisotropic plates: comparison between theory and experiment, In: Review of Progress in Quantitative NDED, New York: AIP, 2001, vol. 20.Google Scholar
  58. 58.
    Wang, L. and Yuan, F.G., Group velocity and characteristic wave curves of Lamb waves in composites: modeling and experiments, Compos. Sci. Technol., 2007, vol. 67, pp. 1370–1384.CrossRefGoogle Scholar
  59. 59.
    Kuznetsov, S.V., Surface waves of non-Rayleigh type, Quart. Appl. Math., 2003, vol. 61, p. 575–582.CrossRefGoogle Scholar
  60. 60.
    Kuznetsov, S.V., Subsonic Lamb waves in anisotropic plates, Quart. Appl. Math., 2002, vol. 60, pp. 577–587.CrossRefGoogle Scholar
  61. 61.
    Markus, S.A., Low-frequency approximations for the zero modes of normal waves in anisotropic plates, Akust. Zh., 1987, vol. 33, pp. 1091–1095.Google Scholar
  62. 62.
    Al'shits, V.I. and Lyubimov, V.N., Abnormal dispersion of surface elastic waves in an anisotropic plate, Kristallografiya, 1988, vol. 33, pp. 279–285.Google Scholar
  63. 63.
    Stroh, A.N., Steady state problems in anisotropic elasticity, J. Math. Phys., 1962, vol. 41, pp. 77–103.CrossRefGoogle Scholar
  64. 64.
    Ingebrigtsen, K.A. and Tonning, A., Elastic surface waves in crystals, Phys. Rev, 1969, vol. 184, pp. 942–951.CrossRefGoogle Scholar
  65. 65.
    Barnett, D.M. and Lothe, J., Synthesis of the sextic and the integral formalism for dislocations, Greens functions, and surface waves in anisotropic elastic solids, Phys. Norv., 1973, vol. 7, pp. 13–19.Google Scholar
  66. 66.
    Chadwick, P. and Smith, G.D., Foundations of the theory of surface waves in anisotropic elastic materials, In; Advances in Applied Mechanics, New York: Academic Press, 1977, vol. 17.Google Scholar
  67. 67.
    Ting, T.C.T. and Barnett, D.M., Classifcations of surface waves in anisotropic elastic materials, Wave Motion, 1997, vol. 26, pp. 207–218.CrossRefGoogle Scholar
  68. 68.
    Ting, T.C.T., On extraordinary semisimple matrix N(ν) for anisotropic elastic materials, Quart. Appl. Math., 1997, vol. 55, pp. 723–738.CrossRefGoogle Scholar
  69. 69.
    Fu, Y.B., Hamiltonian interpretation of the Stroh formalism in anisotropic elasticity, Proc. R. Soc. A, 2007, vol. 463, pp. 3073–3087.CrossRefGoogle Scholar
  70. 70.
    Tanuma, K., Stroh Formalism and Rayleigh Waves, Springer, 2010.Google Scholar
  71. 71.
    Shuvalov, A.L., On the theory of wave propagation in anisotropic plates, Proc. R. Soc. London. Ser. A, 2000, vol. 456, pp. 2197–2222.CrossRefGoogle Scholar
  72. 72.
    Alshits, V., Deschamps, M., and Maugin, G., Elastic waves in anisotropic plates: short-wavelength asymptotics of the dispersion branches Vn(k), Wave Motion, 2003, vol. 37, no. 3, pp. 273–292.CrossRefGoogle Scholar
  73. 73.
    Ting, T.C.T., Anisotropic Elasticity: Theory and Applications, New York: Oxford Univ. Press, 1996.Google Scholar
  74. 74.
    Kuznetsov, S.V., Love waves in stratifed monoclinic media, Quart. Appl. Math., 2004, vol. 62, pp. 749–766.CrossRefGoogle Scholar
  75. 75.
    Kuznetsov, S.V., SH-waves in laminated plates, Quart. Appl. Math., 2006, vol. 64, pp. 153–165.CrossRefGoogle Scholar
  76. 76.
    Kuznetsov, S.V., Love waves in nondestructive diagnostics of layered composites, Acoust. Phys., 2010, vol. 56, pp. 877–892.CrossRefGoogle Scholar
  77. 77.
    Gregory, R.D. and Gladwell, I., The refection of a symmetric Rayleigh-Lamb wave at the fixed or free edge of a plate, J. Elasticity, 1983, vol. 13, pp. 185–206.CrossRefGoogle Scholar
  78. 78.
    Aki, K. and Richards, P.G., Quantitative Seismology. Theory and Methods, New York: W.H. Freeman and Co., 1980.Google Scholar
  79. 79.
    Ben-Menahem, A. and Singh, S.J., Seismic Waves and Sources, Dover Publications, 2012.Google Scholar
  80. 80.
    Chapman, C., Fundamentals of Seismic Wave Propagation, New York: Cambridge Univ. Press, 2010.Google Scholar
  81. 81.
    Sheriff, R.E. and Geldart, R.P., Exploration Seismology, New York: Cambridge Univ. Press, 1995.CrossRefGoogle Scholar
  82. 82.
    Bergmann, L., Der Ultraschall, Zurich: S. Hirzel Verlag, 1949.Google Scholar
  83. 83.
    Viktorov, I.A., Ultrasonic Lamb waves: a review, Akust. Zh., 1965, vol. 11, pp. 1–18.Google Scholar
  84. 84.
    Doxbeck, M.A., Hussain, M.A., Rama, J., Abate, A., and Frankel, J., An algorithm for the determination of coating properties from laser generated and detected Rayleigh waves using wavelet analysis, Rev. Prog. QNDE, 2002, vol. 21, pp. 292–299.Google Scholar
  85. 85.
    Golubev, E.V., Gurevich, S.Yu., and Petrov, Yu.V., On the theory of Lamb wave excitation in metals by pulsed laser radiation, Acoust. Phys., 2011, vol. 57, pp. 620–626.CrossRefGoogle Scholar
  86. 86.
    Royer, D. and Dieulesaint, E., Elastic Waves in Solids 1. Free and Guided Propagation, New York: Springer, 2009.Google Scholar
  87. 87.
    Moler, C. and Loan, Ch.V., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review, 2003, vol. 45, pp. 1–46.CrossRefGoogle Scholar
  88. 88.
    Hartman, P., Ordinary Differential Equations, New York: SIAM, 2002.CrossRefGoogle Scholar
  89. 89.
    Pease, M.C., Methods of Matrix Algebra, London: Academic Press, 1965.Google Scholar
  90. 90.
    Dunkin, J.W., Computation of modal solutions in layered elastic media at high frequencies, Bull. Seism. Soc. Am., 1965, vol. 55, p. 335–358.Google Scholar
  91. 91.
    Lévesque, D. and Piche, L., A robust transfer matrix formulation for the ultrasonic response of multilayered absorbing media, J. Acoust. Soc., 1992, vol. 92, pp. 452–467.CrossRefGoogle Scholar
  92. 92.
    Castaings, M. and Hosten, B., Delta operator technique to improve the Thomson–Haskell method stability for propagation in multilayered anisotropic absorbing plate, J. Acoust. Soc. Am., 1994, vol. 95, pp. 1931–1941.CrossRefGoogle Scholar
  93. 93.
    Lowe, M.J.S., Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason. Eng., 1995, vol. 42, pp. 525–542.CrossRefGoogle Scholar
  94. 94.
    Wang, L. and Rokhlin, S.I., Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media, Ultrason., 2001, vol. 39, pp. 413–424.CrossRefGoogle Scholar
  95. 95.
    Bailey, D.H., A portable high performance multiprecision package, NASA RNR Tech. Rep., 1993.Google Scholar
  96. 96.
    Bailey, D.H., Automatic translation of Fortran programs to multiprecision, NASA RNR Tech. Rep., 1993.Google Scholar
  97. 97.
    Guo, C.Y. and Wheeler, L., Extreme Poisson’s ratios and related elastic crystal properties, J. Mech. Phys. Solids, 2006, vol. 54, pp. 690–707.CrossRefGoogle Scholar
  98. 98.
    Schecklman, S., Zurk, L.M., Henry, S., and Kniffin, G.P., http://dx.doi.org/ doi 10.1063/1.3561806Google Scholar
  99. 99.
    Kulesh, M.A., Matveenko, V.P., and Shardakov, I.N., Propagation of surface elastic waves in the Cosserat medium, Acoust. Phys., 2006, vol. 52, no. 2, pp. 186–193.CrossRefGoogle Scholar
  100. 100.
    Kulesh, M.A., Grekova, E.F., and Shardakov, I.N., The problem of surface wave propagation in a reduced Cosserat medium, Acouts. Phys., 2009, vol. 55, no. 2, pp. 218–226.Google Scholar
  101. 101.
    Markov, M.G., Rayleigh wave propagation along the boundary of a non-Newtonian fluid-saturated porous medium, Acoust. Phys., 2006, vol. 52, no. 4, pp. 429–434.CrossRefGoogle Scholar
  102. 102.
    Bobrovnitskii, Yu.I., A Rayleigh-type wave at the plane interface of two homogeneous fluid half-spaces, Acouts. Phys., 2011, vol. 57, no. 5, p. 595–597.Google Scholar
  103. 103.
    Kuznetsov, S.V. and Terentjeva, E.O., Planar internal Lamb problem: waves in the epicentral zone of a vertical power source, Acoust. Phys., 2015, vol. 61, no. 3, pp. 356–367.CrossRefGoogle Scholar
  104. 104.
    Kuznetsov, S.V. and Terentjeva, E.O., Wave felds and domination regions for the interior Lamb problem, Mech. Solids, 2015, vol. 5, pp. 508–520.CrossRefGoogle Scholar
  105. 105.
    Sekerzh-Zenkovich, S.J., Ilyasov, H.H., Kravtsov, A.V., and Kuznetsov, S.V., Outer Lamb problem. Distributed harmonic surface loading, Mech. Solids, 2016, vol. 1, pp. 50–56.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Moscow State University of Civil EngineeringMoscowRussia
  2. 2.Institute for Problems in MechanicsMoscowRussia

Personalised recommendations