Russian Journal of Nondestructive Testing

, Volume 53, Issue 4, pp 260–264 | Cite as

Directional Characteristics of a Laser Pulsed Thermoacoustic Emitter in Nonmagnetic Metals

  • S. Yu. Gurevich
  • Yu. V. Petrov
  • E. V. Golubev
Acoustic Methods


Results of experiments on studying the dependence of the directivity of a pulsed laser thermoacoustic emitter of longitudinal and transverse ultrasonic waves that operates in a nonmagnetic conducting medium on the surface density of laser-radiation heat power are presented. The results can be recommended for nondestructive testing of nonmagnetic materials and articles with laser ultrasonic sources.


laser thermoacoustic emitter directional characteristic wideband EMA-receiver amplitude- frequency spectrum of ultrasonic pulse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simonova, V.A., Savateeva, E.V., Karabutov, A.A., Karabutov, A.A., Kaptil’nyi, A.G., Ksenofontov, D.M., and Podymova, N.B., Optoacoustic and laser diagnostics and nondestructive testing, Vestn. Russ. Found. Fundam. Res., 2014, no. 3.Google Scholar
  2. 2.
    Kenderian, S., Djordjevic, B.B., and Green, R.E., Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials, Res. Nondestr. Eval, 2001, vol. 13, pp. 189–200.CrossRefGoogle Scholar
  3. 3.
    Dewhurst, R.J. and Dutton, B., Laser/EMAT measurement systems for materials evaluation, J. Phys.: Conf. Ser., 2007, vol. 76, conf. 1, 012013 p.Google Scholar
  4. 4.
    Kalimullin, R.I., Migachev, S.A., and Khasanov, A.A., Developing a technique for nondestructive ultrasonic testing by means of laser generation of bulk and surface waves, Izv. Vyssh. Uchebn. Zaved.: Probl. Energ., 2010, no. 9–10, pp. 92–97.Google Scholar
  5. 5.
    Rizzo, P., Ni, X.-L., and Han, J.-G., Structural health monitoring of immersed structures by means of guided ultrasonic waves, J. Intell. Mater. Syst. Struct., 2010, vol. 21, no. 14, pp. 1397–1407.CrossRefGoogle Scholar
  6. 6.
    Bychenok, V.A. and Kinzhagulov, I.Yu., Laser ultrasonic testing of thin-walled soldered junctions in the chambers of liquid-propellant rocket engines, Izv. Vyssh. Uchebn. Zaved.: Priborostr., 2011, vol. 54, no. 7, pp. 50–54.Google Scholar
  7. 7.
    Golenishchev-Kutuzov, V.A., Kalimullin, R.I., Migachev, S.A., Petrushenko, Yu.Ya., and Khasanov, A.A., Laser acoustic method for the inspection of flaws in metals and the metallized coatings of dielectrics, Russ. J. Nondestr. Test., 2011, vol. 47, no. 2, pp. 118–122.CrossRefGoogle Scholar
  8. 8.
    Sun, J.-H., Zhao, Y., Ma, J., Song, J.-F., Guo, R., Liu, S., and Nan, G.-Y., Jia Z.-Q., Research on laser-EMA ultrasonic detection system for the defects of rail screw hole, Guangdianzi, Jiguang, 2014, vol. 25, no. 6, pp. 1165–1170.Google Scholar
  9. 9.
    Karpenko, O.N., Kirpichnikov, A.P., Oleshko, V.S., Popov, A.V., and Tkachenko, D.P., Laser optoacoustic method for evaluating stressedly deformed state in the blades of gas-turbine engines, Vestn. Tekhnol. Univ., 2014, vol. 17, no. 2, pp. 251–253.Google Scholar
  10. 10.
    Karpenko, O.N., Oleshko, V.S., Popov, A.V., and Samoilenko, V.M., On the estimation of stressedly deformed state of the blades of a gas-turbine engine by the laser optoacoustic method, Nauchn. Vestn. MGTU GA, 2014, no. 206, pp. 96–102.Google Scholar
  11. 11.
    Popovich, A.A., Masailo, D.V., Sufiyarov, V.Sh., Borisov, E.V., Polozov, I.A., Bychenok, V.A., Kinzhagulov, I.Yu., Berkutov, I.V., Ashikhin, D.S., and Il’inskii, A.V, A laser ultrasonic technique for studying the properties of products manufactured by additive technologies, Russ. J. Nondestr. Test., 2016, vol. 52, no. 6, pp. 303–309.CrossRefGoogle Scholar
  12. 12.
    Gurevich, S.Yu., Petrov, Yu.V., Golubev, E.V., and Karasev, O.V., Experimental study of directional characteristics of a pulsed laser thermoacoustic radiator, Russ. J. Nondestr. Test., 2016, vol. 52, no. 6, pp. 315–323.CrossRefGoogle Scholar
  13. 13.
    Chabanov, V.E., Lazernyi ul’trazvukovoi kontrol' materialov (Laser Ultrasonic Testing of Materials), Leningrad: Izd. Leningr. Univ., 1986.Google Scholar
  14. 14.
    Edwards, C., Taylor, G.S., and Palmer, S.B., Ultrasonic generation with a pulsed TEA CO2 laser, J. Phys. D: Appl. Phys., 1989, vol. 22, no. 9, p. 1266–1270.CrossRefGoogle Scholar
  15. 15.
    Davies, S.J., Edwards, C., Taylor, G.S., and Palmer, S.B., Laser-generated ultrasound: its properties, mechanisms and multifarious applications, J. Phys. D: Appl. Phys., 1993, vol. 26, no. 3, pp. 329–348.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. Yu. Gurevich
    • 1
  • Yu. V. Petrov
    • 1
  • E. V. Golubev
    • 1
  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations