Advertisement

Pattern Recognition and Image Analysis

, Volume 28, Issue 1, pp 122–132 | Cite as

Empirical Mode Decomposition for Signal Preprocessing and Classification of Intrinsic Mode Functions

  • D. M. Klionskiy
  • D. I. Kaplun
  • V. V. Geppener
Applied Problems
  • 17 Downloads

Abstract

Empirical mode decomposition (EMD) is an adaptive, data-driven technique for processing and analyzing various types of non-stationary signals. EMD is a powerful and effective tool for signal preprocessing (denoising, detrending, regularity estimation) and time-frequency analysis. This paper discusses pattern discovery in signals via EMD. New approaches to this problem are introduced, which involve well-known information criteria along with some other proposed ones, which have been investigated and developed for our particular tasks. In addition, the methods expounded in the paper may be considered as a way of denoising and coping with the redundancy problem of EMD. A general classification of intrinsic mode functions (IMFs, empirical modes) in accordance with their physical interpretation is offered and an attempt is made to perform classification on the basis of the regression theory, special classification statistics and some cluster- analysis algorithm. The main advantage of the innovations is their capability of working automatically. Simulation studies have been undertaken on multiharmonic signals. We also cover some aspects of hardware implementation of EMD.

Keywords

empirical mode decomposition intrinsic mode function preprocessing denoising classification information criterion regression hardware implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. E. Huang and S. S. P. Shen, The Hilbert Transform and Its Applications (World Scientific, 2005).CrossRefGoogle Scholar
  2. 2.
    N. E. Huang, et al., “The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis,” Proc. Roy. Soc. London 454, 903–995 (1998).CrossRefMATHGoogle Scholar
  3. 3.
    P. Flandrin, G. Rilling, and P. Gonsalves, “Empirical mode decomposition as a filter bank,” IEEE Signal Processing Lett. 11 (2), 112–114 (2004).CrossRefGoogle Scholar
  4. 4.
    N. E. Huang, Z. Shen, and S. R. Long, “A new view of nonlinear water waves: the Hilbert spectrum,” Annu. Rev. Fluid Mech. 31, 417–457 (1999).MathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Rilling, P. Flandrin, and P. Goncalves, “On empirical mode decomposition and its algorithms,” in Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03 (Grabo, 2003), pp. 1–5.Google Scholar
  6. 6.
    P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical mode decomposition as a filter bank,” IEEE Signal Process. Lett. 11 (2), 12–114 (2004).CrossRefGoogle Scholar
  7. 7.
    Nii Attoh-Okine, K. Barner, D. Bentil, and R. Zhang, “The empirical mode decomposition and the Hilbert- Huang transform,” EURASIP J. Adv. Signal Processing, 1–2 (2008).Google Scholar
  8. 8.
    R. T. Rato, M. D. Ortigueira, and A. G. Batista, “On the HHT, its problems, and some solutions,” Mech. Syst. Signal Processing 22 (6), 1374–1394 (2008).CrossRefGoogle Scholar
  9. 9.
    D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41 (7), 66–74 (2003).CrossRefGoogle Scholar
  10. 10.
    D. Kaplun, D. Klionskiy, A. Voznesenskiy, and V. Gulvanskiy, “Digital filter bank implementation in hydroacoustic monitoring tasks,” Przeglad Electrotechniczny (Electr. Rev.) 91 (2), 47–50 (2015).Google Scholar
  11. 11.
    P. Stoica and R. Moses, Spectral Analysis of Signals (Upper Saddle River, NJ, 2005).Google Scholar
  12. 12.
    P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods (Springer, 1987).CrossRefMATHGoogle Scholar
  13. 13.
    K. P. Burnham and D. R. Anderson, “Multimodel inference: understanding AIC and BIC in model selection,” Sociol. Methods Res. 33 (2), 261–304 (2004).MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Konishi and G. Kitagawa, Information Criteria and Statistical Modeling (Springer, 2008).CrossRefMATHGoogle Scholar
  15. 15.
    A. D. R. McQuarrie and C.-L. Tsai, Regression and Time Series Model Selection (World Scientific, 1998).CrossRefMATHGoogle Scholar
  16. 16.
    S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, 2008).MATHGoogle Scholar
  17. 17.
    I. H. Witte, et al., Data Mining: Practical Machine Learning Tools and Techniques with Java Implementation (Academic Press, 2000).Google Scholar
  18. 18.
    H. Ian and F. Eibe, Data Mining Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2005).MATHGoogle Scholar
  19. 19.
    J. Sanders and E. Kandrot, CUDA by Example: an Introduction to General-Purpose GPU Programming (Addison- Wesley Professional, 2010).Google Scholar
  20. 20.
    S. A. White, “Applications of distributed arithmetic to digital signal processing: a tutorial review,” IEEE ASSP Mag. 6, 4–19 (1989).CrossRefGoogle Scholar
  21. 21.
    D. I. Kaplun, V. V. Gulvanskiy, D. M. Klionskiy, M. S. Kupriyanov, and A. V. Veligosha, “Implementation of digital filters in the residue number system,” in Proc. 2016 IEEE NorthWest Russia Section Young Researchers in Electrical and Electronic Engineering Conf. (ElConRusNW) (Saint Petersburg, 2016), pp. 230–234.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. M. Klionskiy
    • 1
  • D. I. Kaplun
    • 1
  • V. V. Geppener
    • 1
  1. 1.Computer Science DepartmentSaint Petersburg Electrotechnical University “LETI”Saint PetersburgRussian Federation

Personalised recommendations