Skip to main content
Log in

Pattern recognition methods as applied to optimize systems represented by simulation models

  • Tutorials
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

This overview lecture discusses four topics and describes the method of approximate optimization of dynamic stochastic systems known as the optimization-simulation method. The grid method of uniform probing of the space of parameters called LP τ-search with averaging allows estimating the efficiency region as the region in the space of parameters where the system quality indices are better than in other regions. Ensuring better quality of processing the results of simulation experiments, pattern recognition methods allow speeding up the evaluation of efficiency regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Metropolis and S. Ulam, “The Monte-Carlo Method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  2. V. A. Starosel’skii, “On Functional Optimization Set by Statistic Model,” Ekonom. Stat. Metody 3(3), 460–461 (1967).

    Google Scholar 

  3. V. F. Dem’yanov and L. V. Vasil’ev, Nondifferentiable Optimization (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  4. A. D. Tsvirkun, V. K. Akinfiev, and V. A. Filippov, Imitational Simulation in Synthesis Problems for Complex Systems Structure (Optimization-Imitation Approach) (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  5. G. M. Antonova and A. D. Tsvirkun, “OptimizationImitation Simulation for Solving Optimization Problems of Modern Complex Control Systems,” Probl. Upravlen., No. 5, 19–27 (2005).

  6. A. A. Zhiglyavskii, Mathematical Theory of Global Random Search (Leningrad Univ. Leningrad, 1985) [in Russian].

  7. A. A. Zhiglyavskii and A. G. Zhilinskas, Methods of Searching the Global Extremum (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  8. S. M. Ermakov and G. A. Mikhailov, Statistical Simulation, 2nd ed. (Nauka, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  9. J. H. Halton, “On the Efficiency of Certain QuasiRandom Sequences of Points in Evaluating MultiDimensional Integrals,” Num. Math. 2(2), 84–90 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  10. N. M. Korobov, “On Approximate Computation of Multiple Integrals,” Dokl. Akad. Nauk SSSR 124(6), 1207–1210 (1959).

    MATH  MathSciNet  Google Scholar 

  11. N. M. Korobov, Numerical-Theoretical Methods in Approximate Analysis (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  12. I. M. Sobol’, Multidimensional Quadrature Formulas and Haar Functions (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  13. I. M. Sobol’ and R. B. Statnikov, How to Choose Optimal Parameters in Multicriteria Problems (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  14. I. M. Sobol’, “How to Estimate Accuracy of Elementary Multidimensional Search,” Dokl. Akad. Nauk SSSR 266(3), 569–572 (1982).

    MathSciNet  Google Scholar 

  15. I. M. Sobol’, “On Functions That Meet Lipschitz Condition in Multidimensional Problems of Calculus Mathematics,” Dokl. Akad. Nauk SSSR 293(6), 1314–1319 (1987).

    MathSciNet  Google Scholar 

  16. I. M. Sobol’, “Uniformly Distributed Sequence with Complementary Uniformity Property,” Zh. Vychisl. Mat. Mat. Fiz. 16(5), 1332–1337 (1976).

    MATH  MathSciNet  Google Scholar 

  17. N. A. Artemova, A. F. Khairullin, and O. B. Khairullina, “How to Generate Optimal Meshes in MultiplyConnected Domains with Complex Topology at Multiprocessor Computers,” in Algorithms and Software for Parallel Calculations (Yekaterinburg, 1998), Issue 2, pp. 22–38 [in Russian].

  18. G. S. Ganshin, “How to Calculate Maximum for a Function of Several Variables,” Kibernetika, No. 2, 61–63 (1983).

  19. N. F. Zaliznyak and A. A. Ligun, “On Optimal Strategies for Searching the Function Global Maximum,” Zh. Vychisl. Mat. Mat. Fiz. 18(2), 314–321 (1978).

    Google Scholar 

  20. V. V. Ivanov, S. K. Girlin, and V. A. Lyudvichenko, “Problems and Results of Global Search for Smooth Functions,” Vopr. Kibernet. 122, 3–13 (1985).

    MATH  MathSciNet  Google Scholar 

  21. S. I. Martynenko, “Universal Multi-Grid Technique for Numerical Simulation of Partial Differential Equations at Structured Grids,” Vychisl. Metody Programm. 1(1), 85–104 (2000).

    Google Scholar 

  22. S. I. Martynenko, “Software for Universal Multigrid Technique: Blocks and Diagnostic Instruments,” Vychisl. Metody Programm. 2(2), 181–186 (2001).

    Google Scholar 

  23. V. N. Nefedov, “How to Calculate the Global Maximum of Function of Several Variables for a Set Given by Limitations of Inequality Type,” Zh. Vychisl. Mat. Mat. Fiz. 27(1), 35–51 (1987).

    MATH  MathSciNet  Google Scholar 

  24. O. B. Khairullina, A. F. Khairullin, and N. A. Artemova, “The Way to Calculate Optimal Grids of High Dimensionality in Multiply-Connected Domains by Using MVS-100 Distributed Memory,” in Algorithms and Software for Parallel Calculations (Yekaterinburg, 1999), Issue 3, pp. 239–251 [in Russian].

  25. A. F. Khairullin and O. B. Khairullina, “Automatic Generation for Initial Approximation of Curvilinear Mesh,” in Algorithms and Software for Parallel Calculations (Yekaterinburg, 2000), Issue 4, pp. 273–286 [in Russian].

  26. O. V. Ushakova, “Parallel Algorithm and Program for Generating Optimal Adaptive Grids,” in Algorithms and Software for Parallel Calculations (Yekaterinburg, 1995), Issue 1, pp. 182–192 [in Russian].

  27. H. Niederreiter, “Quasi-Monte-Carlo Methods and Pseudo Random Numbers,” Bull. Amer. Math. Soc. 84(6), 957–1041 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Niederreiter and K. McCurley, “Optimization of Functions by Quasi-Random Search Methods,” Comput. 22, 119–123 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  29. I. M. Sobol’, Monte-Carlo Numerical Methods (Nauka, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

  30. V. M. Chernov, “Canonical Number Systems and TwoDimensional Uniform Distribution,” in Proc. 7th Int. Conf. on Pattern Recognition and Image Analysis: New Information Technologies PRIA-7-2004 (St. Petersburg, Oct. 18–23, 2004), Vol. 1, pp. 185–188.

    Google Scholar 

  31. V. D. Liseikin, “The Ways for Generating Structural Adaptive Grids: Review,” Zh. Vychisl. Mat. Mat. Fiz. 36(1), 3–41 (1996).

    MathSciNet  Google Scholar 

  32. N. A. Artemova, A. F. Khairullin, and O. B. Khairullina, “How to Generate Optimal Meshes in Multiply-Connected Domains with Complex Topology at Multiprocessor Computers,” in Algorithms and Software for Parallel Calculations (Yekaterinburg, 1998), Issue 2, pp. 22–38.

  33. Zh. M. Sakhabutdinov, G. A. Petrov, and S. V. Maigurova, “How to Construct and Optimize 3D Curvilinear Meshes,” in Problems of Atomic Science and Technique. Series Mathematical Simulation for Physical Processes (NII Upr. ekon. i informatsii, Moscow, 1989), Issue 1, pp. 9–18.

    Google Scholar 

  34. L.-E. Eriksson, “Practical Three-Dimensional Mesh Generation Using Transfinite Interpolation,” SIAM J. Sci. Stat. Comput. 6(3), 712–742 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  35. O. A. Borovikov, “How to Optimize Nodes Distribution for Computational Mesh,” Gazodinam. Teploobmen, No. 8, 102–112 (1984).

  36. Y. H. Oh, An Analytical Transformation Technique for Generating Uniformly Spaced Computational Mesh (WNGG-NASA, 1980).

  37. R. D. Russel and J. Christiansen, “Adaptive Mesh Selection Strategies for Solving Boundary Value Problems,” Numer. Anal. 15, 59–80 (1978).

    Article  Google Scholar 

  38. A. M. Sorokin, “How to Generate the Computational Meshes for the Problems on Flat Transonic Flows,” Uch. Zapiski TsAGI 17(3), 115–120 (1986).

    Google Scholar 

  39. A. M. Winslow, “Adaptive Mesh Zoning by the Equipotential Method,” Technical Report UCID 19062 (1981).

  40. D. A. Anderson, “Equidistribution Schemes. Poisson Generators and Adaptive Grids,” Appl. Math. Comput. 24(3), 211–227 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  41. K. L. Bogomolov, L. M. Degtyarev, and V. F. Tishkin, “Variation Method for Generating the High Aspect Uniform Adaptive Meshes,” Mat. Model. 13(5) (2001).

  42. G. H. Klopfer and D. D. McRae, “The Nonlinear Modified Equation Approach to Analyzing Finite Difference Schemes,” AIAA Paper, No. 81-1029 (1981).

  43. J. P. Boris, “New Directions in Computational Fluid Dynamics,” Ann. Rev. Fluid Mech. 21, 345–385 (1985).

    Article  Google Scholar 

  44. A. E. Andrews, “Progress and Challenges in the Application of Artificial Intelligence to Computational Fluid Dynamics,” AIAA J. 26(1) 40–46 (1988).

    Article  Google Scholar 

  45. G. M. Antonova, “Optimizing Imitational Approach for Choosing Functioning Algorithms for Data Transfer Systems,” Avtomat. Telemekhan., No. 9, 167–174 (1996).

  46. G. M. Antonova, “Application of LP τ Optimization in the Frames of Optimizing Imitational Approach for Choosing the Noise Resistant Correcting Codes,” Avtomat. Telemekhan., No. 9, 162–168 (1999).

    Google Scholar 

  47. G. M. Antonova, “Parallel Algorithm for Researching Dynamic Stochastic Processes or Systems, Presented by Imitation Models,” in Proc. Int. Conf. Parallel Computations and Control Problems (PACO’2001) (Moscow, 2001), Vol. 3, pp. 30–41.

    Google Scholar 

  48. G. M. Antonova, “LP τ -Search with Averaging as a New Technique for Optimal Decisions Making,” Appendix to “Informatsionnye Tekhnologii” Zh., No. 6, 1–24 (2001).

  49. G. M. Antonova, “The Way to Optimize the System of Phase Tuning in Net Satellite Radionavigation System by Using LP gt-Search with Averaging,” in Proc. 2nd Int. Conf. on Control Problems (Institut problem upravleniya, Moscow, 2003), pp. 91–98.

    Google Scholar 

  50. G. M. Antonova and A. Yu. Baikov, “The Way to Use the LP τ-Search with Averaging for Parameters Choosing If Powerful Resonator VHF Instruments of O Type are Synthesized,” in Proc. 5th Int. Conf. “Systems Identification and Control Problems” (Institut problem upravleniya, Moscow, 2006), pp. 823–837.

    Google Scholar 

  51. G. M. Antonova, “Application of Recognition Procedures for Estimating the Efficiency Regions for LP τ-Search with Averaging,” Pattern Recogn. Image Anal. 16(4) (2006).

  52. G. M. Antonova, Uniform Probing Mesh Methods for Investigating and Optimizing Dynamic Stochastic Systems (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  53. G. M. Antonova, “Approximate Methods of Multicriteria Optimization for Developing Devices by Considering Requirements on Dynamic Performances,” in Proc. 9th Int. Sci. Conf. “Recognition 2010” (KGTU, Kursk, 2010).

    Google Scholar 

  54. G. M. Antonova, “Identification Approach for Investigating Stochastic Systems Presented by Imitation Models,” in Proc. 2nd Int. Conf. “Systems Identification and Control Problems” (Moscow, 2003), pp. 2125–2138.

  55. J. Tou and R. Gonzales, Pattern Recognition Principles (Addison-Wesley, 1974; Mir, Moscow, 1978).

    Google Scholar 

  56. Z. M. Kanevskii, M. I. Dorman, B. V. Tokarev, and V. V. Kretinin, Information Transition with Feedback (Svyaz’, Moscow, 1976) [in Russian].

    Google Scholar 

  57. D. D. Klovskii, Discrete Messages Transmission with Radio Channels (Svyaz’, Moscow, 1969) [in Russian].

    Google Scholar 

  58. M. Nakagami, The m Distribution a General Formula of Intensity Distribution of Rapid Fading. Statistical Methods in Radio Wave Propagation (New York, 1960).

  59. Special Functions: Handbook, Ed. by M. Abramovits and I. Stigan (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  60. L. N. Bol’shev and N. V. Smirnov, Tables for Mathematical Statistics (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  61. V. P. Bogomolov, A. P. Vinogradov, V. A. Voronchikhin, Yu. I. Zhuravlev, N. N. Katerinochkina, S. B. Larin, V. V. Ryazanov, and O. V. Sen’ko, Software LOREG: Recognition Algorithms Based on Voting for Sets of Logical Regularities (VTs RAN, Moscow, 1998) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Antonova.

Additional information

Galina M. Antonova. Born in 1951. Graduated from St Petersburg State Polytechnic University (Leningrad Polytechnic University) in 1974. Received candidate’s degree in Technical Cybernetics and Information Theory in 1980. She completed her second thesis and received her doctor’s degree in System Analysis, Control, and Information Processing at Trapeznikov Institute of Control Sciences in 2002. Her further work deals with improving the proposed methods and algorithms of optimization of dynamic stochastic systems using simulation models. At present, leading scientist at Trapeznikov Institute of Control Sciences. Member of Moscow Society for Simulation Modeling and the Mendeleev Russian Chemical Society. Scientific interests include simulation modeling, optimization of dynamic stochastic systems, pattern recognition. Author of more than 150 publications, including 3 monographs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonova, G.M. Pattern recognition methods as applied to optimize systems represented by simulation models. Pattern Recognit. Image Anal. 22, 69–81 (2012). https://doi.org/10.1134/S105466181201004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S105466181201004X

Keywords

Navigation