Skip to main content
Log in

Self-Similar Patterns of Damage Development and Reliability Assessment of AMg6 and D16T Aluminum Alloys under Consecutive Dynamic and Gigacycle Loading

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In the paper, we study the kinetics of fatigue crack growth in MMg6 and D16T aluminum alloys in the gigacycle fatigue mode under dynamic preloading. The relevance of the problem statement is determined by the critical applications—life estimation of materials and structural elements of aircraft gas turbine engines experiencing random dynamic effects under flight cycle conditions. Specimens were preloaded by dynamic tension using the split Hopkinson (Kolsky) pressure bar at strain rates up to ~103 s−1, with consecutive gigacycle loading on the Shimadzu USF-2000 ultrasonic testing machine. Quantitative fractography of fracture surfaces was performed using profilometry and scanning electron microscopy data. We propose an original form of the kinetic equation, which relates the fatigue crack growth rate to a change in the stress intensity factor. The scale invariance of defect structures responsible for the formation of the fracture surface relief under gigacycle fatigue loading is found to be related to the power exponent of the Paris law. The fracture surface morphology of an aluminum-magnesium alloy under consecutive dynamic and gigacycle loading is studied by the multifractal detrended fluctuation analysis method. It is found that a transition from the stage of formation of a fish-eye zone of localized deformation is caused by the generation of fracture sites and accompanied by a qualitative change of the nonlinear dynamics of the system—a transition from monofractal to multifractal dynamics characterized by broadening of a multifractal spectrum at the final crack growth stage, which leads to macrofracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cowles, B.A., High Cycle Fatigue in Aircraft Gas Turbines—an Industry Perspective, Int. J. Fract., 1996, vol. 80, pp. 147–163.

    Article  Google Scholar 

  2. Shanyavskiy, A.A., Simulation of Fatigue Failure of Metals. Synergetics in Aviation, Ufa: Monografiya, 2007.

    Google Scholar 

  3. Nicholas, T., High Cycle Fatigue. A Mechanics of Material Perspective, New York: Elsevier, 2006.

    Google Scholar 

  4. Peters, J.O. and Ritchie, R.O., Influence of Foreign-Object Damage on Crack Initiation and Early Crack Growth during High-Cycle Fatigue of Ti-6Al-4V, Eng. Fract. Mech., 2000, vol. 67, pp. 193–207.

    Article  Google Scholar 

  5. Spanrad, S. and Tong, J., Characterization of Foreign Object Damage (FOD) and Early Fatigue Crack Growth in Laser Shock Peened Ti-6Al-4V Aerofoil Specimens, Mater. Sci. Eng. A, 2011, vol. 528, pp. 2128–2136.

    Article  Google Scholar 

  6. Oakley, S.Y. and Nowell, D., Prediction of the Combined High- and Low-Cycle Fatigue Performance of Gas Turbine Blades after Foreign Object Damage, Int. J. Fatigue, 2007, vol. 29, pp. 69–80.

    Article  Google Scholar 

  7. Chen, Xi, Foreign Object Damage on the Leading Edge of a Thin Blade, Mech. Mater., 2005, vol. 37, pp. 447–457.

    Article  ADS  Google Scholar 

  8. Nowell, D., Duy, P., and Stewart, I.F., Prediction of Fatigue Performance in Gas Turbine Blades after Foreign Object Damage, Int. J. Fatigue, 2003, vol. 25, pp. 963–969.

    Article  Google Scholar 

  9. Franklin, J., Foreign Object Damage in the UK RAF, National Aerospace FOD Prevention Inc. (NAFPI), 1st Int. Conference, London, 2003.

    Google Scholar 

  10. Panin, V.E., Elsukova, T.F., Popkova, Yu.F., Pochivalov, Yu.I., and Sunder Ramasubbu, Effect of Structural States in Near-Surface Layers of Commercial Titanium on Its Fatigue Life and Fatigue Fracture Mechanisms, Phys. Mesomech., 2015, vol. 18, no. 1, pp. 1–7.

    Article  Google Scholar 

  11. Mughrabi, H., Microstructural Fatigue Mechanisms: Cyclic Slip Irreversibility, Crack Initiation, Non-Linear Elastic Damage Analysis, Int. J. Fatigue, 2013, vol. 57, pp. 2–8.

    Article  Google Scholar 

  12. Bathias, C. and Paris, P.C., Gigacycle Fatigue in Mechanical Practice, New York: Marcel Dekker, 2005.

    Google Scholar 

  13. Bilalov, D.A., Sokovikov, M.A., Chudinov, V.V., Oborin, V.A., Bayandin, Yu.V., Terekhina, A.I., and Naimark, O.B., Study of Localized Plastic Shear in Aluminum Alloys under Dynamic Loading, Vych. Mekh. Splosh. Sred, 2015, vol. 8, no. 3, pp. 319–328.

    Google Scholar 

  14. Frolov, K.V., Engineering Encyclopedia. Volume II-3: Metals and Alloys. Composite Metal Materials, Moscow: Mashinostroenie, 2001.

    Google Scholar 

  15. Feder, E., Danilov, Yu.A., and Shukurov, A., Fractals, Moscow: Mir, 1991.

    Google Scholar 

  16. Mandelbrot, B.B., The Fractal Geometry of Nature, New York: Freeman, 1983.

    Book  Google Scholar 

  17. Bouchaud, E., Scaling Properties of Cracks, J. Phys. Condens. Matter., 1997, vol. 9, pp. 4319–4344.

    Article  ADS  Google Scholar 

  18. Lyakishev, N.P., State Diagrams of Dual Metal Systems, vol. 1, Moscow: Mashinostroenie, 1996.

    Google Scholar 

  19. Barenblatt, G.I., Scaling Phenomena in Fatigue and Fracture, Int. J. Fract., 2006, vol. 138, pp. 19–35.

    Article  MATH  Google Scholar 

  20. Barenblatt, G.I. and Botvina, L.R., Self-Similarity of Fatigue Fracture. Damage Accumulation, Izv. AN SSSR. MTT, 1983, no. 4, pp. 161–165.

    Google Scholar 

  21. Hertzberg, R.W., On the Calculation of Closure-Free Fatigue Crack Propagation Data in Monolithic Metal Alloys, Mater. Sci. Eng. A, 1995, vol. 190, pp. 25–32.

    Article  Google Scholar 

  22. Bilalov, D.M., Bayandin, Yu.V., and Naimark, O.B., Mathematical Simulation of Fracture Processes of MMg2.5 Alloy in the High- and Gigacycle Fatigue Mode, Vych. Mekh. Splosh. Sred, 2018, vol. 11, no. 3, pp. 323–334.

    Google Scholar 

  23. Betekhtin, V.C., Kadomtsev, M.G., Narykova, M.V., Bannikov, M.V., Abaimov, S.G., Akhatov, I.Sh., and Palin Luc, T., Experimental and Theoretical Study of Multiscale Damage-Failure Transition in Very High Cycle Fatigue, Phys. Mesomech., 2017, vol. 20, no. 1, pp. 78–89.

    Article  Google Scholar 

  24. Dupak, Gh., Srimonti, D., and Shukla, S., Fluctuation of Gold Price: a Multifractal Mpproach, Acta Phys. Pol. B, 2012, vol. 43, no. 6, pp. 1261–1274.

    Article  Google Scholar 

  25. Kantelhardt, J.W., Zschiegner, S.M., Koscielny-Bunde, E., Bende, M., Havlin, S., and Stanley, H.S., Multifractal Detrended Fluctuation Analysis, Physica A, 2002, vol. 316, pp. 87–114.

    Article  ADS  MATH  Google Scholar 

  26. Absil, P., Sepulchre, R., Bilge, M., and Gérard, P., Nonlinear Analysis of Cardiac Rhythm Fluctuations Using DFM Method, Physica A, 1999, vol. 272, pp. 235–244.

    Article  ADS  Google Scholar 

  27. Makowiec, D., Galaska, R., Dudkowska, A., Rynkiewicz, A., and Zwierz, M., Long-Range Dependencies in Heart Rate Signals—Revisited, Physica A, 2006, vol. 369, pp. 632–644.

    Article  ADS  Google Scholar 

  28. Biswas, M., Zeleke, T.B., and Si, B.C., Multifractal Detrended Fluctuation Analysis in Examining Scaling Properties of the Spatial Patterns of Soil Water Storage, Nonlinear Processes Geophys., 2012, vol. 19, pp. 227–238.

    Article  ADS  Google Scholar 

  29. Movahed, M.S., Rahvar, S., Tabar, M.R.R., Jafari, G.R., and Ghasemi, F., Multifractal Detrended Fluctuation Analysis of Sunspot Time Series, J. Stat. Mech. Theory Exp., 2006, no. 2, pp. 75–91.

    Google Scholar 

  30. Pedron, C.T., Correlation and Multifractality in Climatological Time Series, J. Phys. Conf. Ser., 2010, vol. 246, p. 012034.

    Article  Google Scholar 

  31. Vernude, S., Ponson, L., and Bouchaud, J.-P., Turbulent Fracture Surfaces: A Footprint of Damage Percolation?, Phys. Rev. Lett., 2015, vol. 114, p. 215501.

    Article  ADS  Google Scholar 

  32. Bozhokin, S.V. and Parshin, D.M., Fractals and Multifractals, Izhevsk: Regular and Chaotic Dynamics, 2001.

    Google Scholar 

  33. Oborin, V.M., Bannikov, M.V., Naimark, O.B., and Palin-Luc, T., Scaling Invariance of Fatigue Crack Growth in Gigacycle Loading Regime, Tech. Phys. Lett., 2010, vol. 36, no. 11, pp. 1061–1063.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Naimark.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oborin, V.A., Bayandin, Y.V., Bilalov, D.A. et al. Self-Similar Patterns of Damage Development and Reliability Assessment of AMg6 and D16T Aluminum Alloys under Consecutive Dynamic and Gigacycle Loading. Phys Mesomech 22, 141–151 (2019). https://doi.org/10.1134/S1029959919020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959919020048

Keywords

Navigation