Skip to main content
Log in

A Precis of Fishnet Statistics for Tail Probability of Failure of Materials with Alternating Series and Parallel Links

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

During the last dozen years it has been established that the Weibull statistical theory of structural failure and strength scaling does not apply to quasibrittle materials. These are heterogeneous materials with brittle constituents and a representative volume element that is not negligible compared to the structure dimensions. A new theory of quasibrittle strength statistics in which the strength distribution is a structure size dependent graft of Gaussian and Weibull distributions has been developed. The present article gives a precis of several recent studies, conducted chiefly at the writer’s home institution, in which the quasibrittle statistics has been refined to capture the statistical effect of alternating series and parallel links, which is exemplified by the material architecture of staggered platelets seen on the submicrometer scale in nacre. This architecture, which resembles a fishnet pulled diagonally, intervenes in many quasibrittle materials. The fishnet architecture is found to be advantageous for increasing the material strength at the tail of failure probability 10—6, which represents the maximum tolerable risk for engineering structures and should be adopted as the basis of tail-risk design. Scaling analysis, asymptotic considerations, and cohesive fracture process zone, which were the hallmark of Barenblatt’s contributions, pervade the new theory, briefly called the “fishnet statistics”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duckett, K., Risk Analysis and the Acceptable Probability of Failure, Struct. Eng., 2005, vol. 83(15), pp. 25–26.

    Google Scholar 

  2. Melchers, R.E., Structural Reliability, Analysis and Prediction, New York: Wiley, 1987.

    Google Scholar 

  3. NKB (Nordic Committee for Building Structures). Recommendation for Loading and Safety Regulations for Structural Design, NKB Report, 1978, no. 36.

  4. Weibull, W., The Phenomenon of Rupture in Solids, Proc. Roy. Swedish Inst. Eng. Res. Stockhohn, 1939, vol. 153, pp. 1–55.

    Google Scholar 

  5. Fisher, R.A. and Tippett, L.H.C., Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample, Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 1928, vol. 24, no. 02, pp. 180–190.

    Article  ADS  MATH  Google Scholar 

  6. Daniels, H.E., The Statistical Theory of the Strength of Bundles and Threads, Proc. R. Soc. Lond. A, 1945, vol. 183, pp. 405–435.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Harlow, D.G. and Phoenix, S.L., The Chain–of–Bundles Probability Model for the Strength of Fibrous Materials I: Analysis and conjectures, J. Compos. Mater., 1978, vol. 12(2), pp. 195–214.

    Article  ADS  Google Scholar 

  8. Harlow, D.G. and Phoenix, S.L., The Chain–of–Bundles Probability Model for the Strength of Fibrous Materials II: A Numerical Study of Convergence, J. Compos. Mater., 1978, vol. 12(3), pp. 314–334.

    Article  ADS  Google Scholar 

  9. Harlow, D.G. and Phoenix, S.L, Bounds on the Probability of Failure of Composite Materials, Int. J. Fracture, 1979, vol. 15(4), pp. 312–336.

    Google Scholar 

  10. Bazant, Z.P. and Pang, S.–D., Mechanics Based Statistics of Failure Risk of Quasibrittle Structures and Size Effect on Safety Factors, Proc. Nat'l Acad. Sci. USA, 2006, vol. 103(25), pp. 9434–9439.

    Article  ADS  Google Scholar 

  11. Bazant, Z.P. and Pang, S.–D., Activation Energy Based Extreme Value Statistics and Size Effect in Brittle and Quasibrittle Fracture, J. Mech. Phys. Solids, 2007, vol. 55, pp. 91–134.

    Article  ADS  MATH  Google Scholar 

  12. Bazant, Z.P. and Le, J.–L., Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect, Cambridge: Cambridge University Press, 2017.

    Book  MATH  Google Scholar 

  13. Luo, Wen and Bazant, Z.P., Fishnet Model for Failure Probability Tail of Nacre–Like Imbricated Lamellar Materials, Proc. Nati. Acad. Sci., 2017, vol. 114(49), pp. 12900–12905.

    Article  ADS  Google Scholar 

  14. Luo, Wen and Bazant, Z.P., Fishnet Statistics for Probabilistic Strength and Scaling of Nacreous Imbricated Lamellar Materials, J. Mech. Phys. Solids, 2017, vol. 109, pp. 264–287 (update of Arxiv1706.01591, June 4, 2017).

    Article  ADS  MathSciNet  Google Scholar 

  15. Freudenthal, A.M., Statistical Approach to Brittle Fracture, in Fracture: An Advanced Treatise, vol. 2, Liebowitz, H., Ed., New York: Academic Press, 1968, pp. 591–619.

    MATH  Google Scholar 

  16. Bazant, Z.P., Le, J.–L., and Bazant, M.Z., Scaling of Strength and Lifetime Probability Distributions of Quasibrittle Structures Based on Atomistic Fracture Mechanics, Proc. Nat. Acad. Sci., 2009, vol. 106–28, pp. 11484–11489.

    Article  Google Scholar 

  17. Barenblatt, G.I., The Formation of Equilibrium Cracks during Brittle Fracture, General Ideas and Hypothesis, Axially Symmetric Cracks, Prikl. Mat. Mech” 1959, vol. 23(3), pp. 434–444.

    Google Scholar 

  18. Bazant, Z.P. and Planas, J., Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, 1998.

    Google Scholar 

  19. Zhurkov, S.N., Kinetic Concept of the Strength of Solids, Int. J. Fract. Mech., 1965, vol. 1(4), pp. 311–323.

    Google Scholar 

  20. Zhurkov, S.N. and Korsukov, V.E., Atomic Mechanism of Fracture of Solid Polymer, J. Polym. Sci., 1974, vol. 12(2), pp. 385–398.

    Google Scholar 

  21. Kramers, H.A., Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reaction, Physica, 1941, vol. 7, pp. 284–304.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bazant, Z.P., Scaling Theory of Quaisbrittle Structural Failure, Proc. Nat'l. Acad. Sci. USA, 2004, vol. 101(37), pp. 13397–13399.

    Article  ADS  Google Scholar 

  23. Bazant, Z.P., Size Effect in Blunt Fracture: Concrete, Rock, Metal, J. Engrg. Mech. ASCE, 1984, vol. 110(4), pp. 518–535.

    Article  Google Scholar 

  24. Bazant, Z.P. and Kazemi, M.T., Determination of Fracture Energy, Process Zone Length and Brittleness Number from Size Effect, with Application to Rock and Concrete, Int. J. Fracture, 1990, vol. 44, pp. 111–131.

    Google Scholar 

  25. Bazant, Z.P., Scaling of Quasibrittle Fracture: Asymptotic Analysis, Int. J. Fracture, 1997, vol. 83(1), pp. 19–40.

    Article  Google Scholar 

  26. Bazant, Z.P., Scaling of Structural Strength, London: Elsevier, 2005.

    MATH  Google Scholar 

  27. Bazant, Z.P. and Le, J.–L., Nano–Mechanics Based Modeling of Lifetime Distribution of Quasibrittle Structures, J. Engrg Failure Analysis, 2009, vol. 16, pp. 2521–2529.

    Article  Google Scholar 

  28. Le, J.–L., Bazant, Z.P., and Bazant, M.Z., Unified Nano–Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: I. Strength, Static Crack Growth, Lifetime and Scaling, J. Mech. Phys Solids, 2011, vol. 59(7), pp. 1291–1321.

    ADS  MATH  Google Scholar 

  29. Le, J.–L. and Bazant, Z.P., Unified Nano–Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: II. Fatigue Crack Growth, Lifetime and Scaling, J. Mech. Phys. Solids, 2011, vol. 59, pp. 1322–1337.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Askarinejad, S. and Rahbar, N., Toughening Mechanisms in Bioinspired Multilayered Materials, J. Roy. Soc. Interface, 2015, vol. 102(12), p. 20140855.

    Google Scholar 

  31. Chen, L., Ballarini, R., Kahn, H., and Heuer, A.H., A Bioinspired Micro–Composite Structure, J. Mater. Res., 2007, vol. 22, no. 1, pp. 124–131.

    Article  ADS  Google Scholar 

  32. Dutta, A., Tekalur, S.A., and Miklavcic, M., Optimal Overlap Length in Staggered Architecture Composites under Dynamic Loading Conditions, J. Mech. Phys. Solids, 2013, vol. 61(1), pp. 145–160.

    Article  ADS  MathSciNet  Google Scholar 

  33. Dutta, A. and Tekalur, S.A., Crack Tortuousity in the Nacreous Layer—Topological Dependence and Biomimetic Design Guideline, Int. J. Solids Struct., 2014, vol. 51(2), p. 325335.

    Google Scholar 

  34. Gao, H., Ji, B., Jäger, I.L., Arzt, E., and Fratzl, P., Materials Become Insensitive to Flaws at Nanoscale: Lessons from Nature, Proc. Nat. Acad. Sci., 2003, vol. 100(10), pp. 5597–5600.

    Article  ADS  Google Scholar 

  35. Shao, Y., Zhao, H.P., Feng, X.Q., and Gao, H., Discontinuous Crack–Bridging Model for Fracture Toughness Analysis of Nacre, J. Mech. Phys. Solids, 2012, vol. 60(8), pp. 1400–1419.

    Article  ADS  MathSciNet  Google Scholar 

  36. Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., and Aksay, I.A., Deformation Mechanisms in Nacre, J. Mater. Res., 2001, vol. 16(09), pp. 2485–2493.

    Article  ADS  Google Scholar 

  37. Wei, X., Filleter, T., and Espinosa, H.D., Statistical Shear Lag Model: Unraveling the Size Effect in Hierarchical Composites, Acta Biomater., 2015, vol. 18, pp. 206–212.

    Article  Google Scholar 

  38. Luo, Wen and Bazant, Z.P., Fishnet Model with Order Statistics for Tail Probability of Failure of Nacreous Biomimetic Materials with Softening Interlaminar Links, J. Mech. Phys. Solids, 2018, vol. 121, pp. 281–295.

    Article  ADS  MathSciNet  Google Scholar 

  39. Barenblatt, G.I., Scaling, Cambridge: Cambridge University Press, 2003.

    Book  MATH  Google Scholar 

  40. Barenblatt, G.I., Similarity, Self–Similarity and Intermediate Asymptotics, Moscow: Gidrometeoizdat, 1978; Consultants Bureau, New York, 1979.

    Google Scholar 

  41. Le, J.–L., Elias, J., and Bazant, Z.P., Computation of Probability Distribution of Strength of Quasibrittle Structures Failing at Macrocrack Initiation, ASCE J. Engrg. Mech., 2012, vol. 138(7), pp. 888–899.

    Article  Google Scholar 

  42. Le, J.–L., Size Effect on Reliability Indices and Safety Factors of Quasibrittle Structures, Struct. Saf., 2015, vol. 52, pp. 20–28.

    Article  Google Scholar 

  43. Le, J.–L., Ballarini, R., and Zhu, Z., Modeling of Probabilistic Failure of Polycrystalline Silicon MEMS Structures, J. Am. Ceram. Soc., 2015, vol. 98–6, pp. 1685–1697.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Bažant.

Additional information

Dedicated to the memory of Grisha, a giant among scientists and my admired friend

Russian Text © Z.P. Bazant, 2018, published in Fizicheskaya Mezomekhanika, 2018, Vol. 21, No. 6, pp. 36–44.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bažant, Z.P. A Precis of Fishnet Statistics for Tail Probability of Failure of Materials with Alternating Series and Parallel Links. Phys Mesomech 22, 32–41 (2019). https://doi.org/10.1134/S1029959919010065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959919010065

Keywords

Navigation