Advertisement

Doklady Physics

, Volume 63, Issue 5, pp 213–217 | Cite as

Optimal Control under a Decrease in the Thermal-Field Intensity Based on Selection of the Heterogeneous-Construction Structure in the Variational Formulation

  • E. L. Gusev
  • V. N. Bakulin
Mechanics
  • 13 Downloads

Abstract

The application of variational methods to the problems of optimal control for a decrease in the intensity of temperature oscillations of the environment on the basis of the choice of the physical and geometrical structure of heterogeneous constructions is proposed. The necessary optimality conditions are developed for the optimal-design problems under study in the variational statement. On the basis of the constructive analysis of the necessary optimality conditions, the qualitative regularities of the optimal heterogeneous structures are established, which makes it possible to estimate the efficiency of the existing heat-shielding constructions and to find in which direction it is necessary to improve their heat-shielding ability to achieve the ultimate possibilities for a decrease in the temperature-action intensity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. L. Chernousko and N. V. Banichuk, Variational Problems of Mechanics and Control (Nauka, Moscow, 1973) [in Russian].Google Scholar
  2. 2.
    G. D. Babe and E. L. Gusev, Mathematical Methods of Optimization of Interference Filters (Nauka, Novosibirsk, 1987) [in Russian].zbMATHGoogle Scholar
  3. 3.
    M. A. Kanibolotsky and Yu. S. Urzhumtsev, Optimal Designing of Layered Constructions (Nauka, Novosibirsk, 1989) [in Russian].Google Scholar
  4. 4.
    E. L. Gusev, Mathematical Methods of Synthesis of Layered Structures (Nauka, Novosibirsk, 1993) [in Russian].zbMATHGoogle Scholar
  5. 5.
    V. N. Bakulin, E. L. Gusev, and V. G. Markov, Methods of Optimal Designing and Calculation of Composition Constructions (Fizmatlit, Moscow, 2008) [in Russian].Google Scholar
  6. 6.
    V. N. Bakulin, V. M. Gribanov, A. V. Ostrik, et al., Mechanical Action of X-Ray Radiation on Thin-Wall Composition Constructions (Fizmatlit, Moscow, 2008) [in Russian].Google Scholar
  7. 7.
    E. L. Gusev, J. Machinery Manufacture and Reliability 44 (2), 148 (2015).CrossRefGoogle Scholar
  8. 8.
    V. N. Bakulin, E. L. Gusev, and E. B. Yarilova, Mat. Modelirovanie 21 (11), 113 (2009).MathSciNetGoogle Scholar
  9. 9.
    E. L. Gusev and V. N. Bakulin, Mech. Composite Materials 51 (5), 637 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    V. N. Bakulin, E. L. Gusev, and V. G. Markov, Mat. Modelirovanie, No. 5, 28 (2000).Google Scholar
  11. 11.
    V. N. Bakulin, E. L. Gusev, and V. G. Markov, Inzh. Fiz. Zh. 74 (6), 53 (2001).Google Scholar
  12. 12.
    E. L. Gusev and V. N. Bakulin, J. Eng. Phys. and Thermophys. 89 (1), 260 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    V. N. Bakulin, E. L. Gusev, V. G. Markov, and A. I. Emel’yanov, Mat. Modelirovanie 14 (9), 71 (2002).Google Scholar
  14. 14.
    E. L. Gusev, Optimal Designing of Multistep Systems (Yakutsk, 1985) [in Russian].Google Scholar
  15. 15.
    L. S. Pontryagin, V. G. Boltyansky, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes (Nauka, Moscow, 1983) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Oil and Gas ProblemsRussian Academy of Sciences, Siberian BranchYakutsk, Republic of Sakha (Yakutia)Russia
  2. 2.Institute of Mathematics and InformaticsAmmosov Northeast Federal UniversityYakutsk, Republic of Sakha (Yakutia)Russia
  3. 3.Institute of Applied MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations