Doklady Physics

, Volume 63, Issue 5, pp 203–207 | Cite as

Influence of the Spatial Model of Lithospheric Plates on an Initial Earthquake

  • V. A. Babeshko
  • O. V. Evdokimova
  • O. M. Babeshko
Mechanics

Abstract

The boundary-value problem for a block structure consisting of an elastic half-space that occupies the lower part of a Cartesian coordinate system and interacts with two block elements in the form of unbounded wedges with right angles at the vertices is considered. The horizontal boundaries of the wedges are rigidly connected with the half-space boundary, and vertical ones are parallel planes. We consider the antiplane problem for cases where the distance between the vertical boundaries of block elements is present or absent. By the example of a three-dimensional problem degenerating into a two-dimensional one, it is shown that an initial earthquake is possible, like in the case of using Kirchhoff plates instead of three-dimensional block elements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, Acta Mech. (2018), https://doi.org/10.1007/s00707-017-2092-0.Google Scholar
  2. 2.
    V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, Ekol. Vestn. Nauchn. Tsentrov ChES, Nos. 1–2, 37 (2016).Google Scholar
  3. 3.
    V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, Ekol. Vestn. Nauchn. Tsentrov ChES, No. 2, 32 (2017).Google Scholar
  4. 4.
    V. A. Babeshko, O. M. Babeshko, and O. V. Yevdokimova, J. Appl. Math. Mech. 74, 633 (2010).MathSciNetCrossRefGoogle Scholar
  5. 5.
    I. I. Vorovich and V. A. Babeshko, Dynamic Mixed Problems of the Theory of Elasticity for Nonclassical Regions (Moscow, 1979) [in Russian].MATHGoogle Scholar
  6. 6.
    B. Hassani and E. Hinton, Comput. Struct. 69, 707 (1998).CrossRefGoogle Scholar
  7. 7.
    Z. Q. Xin and C. J. Wu, Adv. Appl. Math. Mech. 6, 732 (2014).MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. P. Bendsøe and O. Sigmund, Topology Optimization (Springer, 2003).MATHGoogle Scholar
  9. 9.
    T. Borrvall and J. Petersson, Int. J. Numer. Methods Fluids 41, 77 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    A. El-Sabbage and A. Baz, Eng. Optimiz. 46, 1153 (2014).CrossRefGoogle Scholar
  11. 11.
    W. Zheng, Y. Lei, S. Li, and Q. Huang, Shock Vib. 20, 199 (2013).CrossRefGoogle Scholar
  12. 12.
    G. van der Veen, M. Langelaar, and F. van Keulen, Struct. Multidiscip. Optim. 51, 673 (2015).MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Dahl, J. S. Jensen, and O. Sigmund, Struct. Multidiscip. Optim. 36, 585 (2008).MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. P. Blasques and M. Stolpe, Compos. Struct. 94, 3278 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Babeshko
    • 1
  • O. V. Evdokimova
    • 1
  • O. M. Babeshko
    • 2
  1. 1.Southern Science CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Kuban State UniversityKrasnodarRussia

Personalised recommendations