Advertisement

Doklady Physics

, Volume 63, Issue 5, pp 193–198 | Cite as

Micronozzle Chocking under Diffusion Combustion of Hydrogen

  • V. V. Kozlov
  • A. G. Shmakov
  • G. R. Grek
  • G. V. Kozlov
  • Yu. A. Litvinenko
Mechanics
  • 21 Downloads

Abstract

The results of experimental investigations of the micronozzle-chocking phenomenon under diffusion combustion of a hydrogen microjet at a high outflow velocity in the case of ignition of hydrogen near the nozzle cut are presented. It is found that the cause of micronozzle chocking is the heating of the nozzle walls from the flame-neck region retained up to transonic velocities and preventing nozzle cooling and the passage of the hydrogen jet to the supersonic-flow velocity. It is shown that hydrogen ignition far from the nozzle cut with a developed hydrogen supersonic flow into the flooded space leads to the disappearance of the flameneck region, flame detachment from the nozzle cut, and, correspondingly, termination of the nozzle heating and the possibility of the microjet coming out at the supersonic-flow velocity for the hydrogen jet. It is established that the flame-neck region is a stabilizing factor for the subsonic combustion of a hydrogen microjet up to transonic velocities. In the second case, the presence of supersonic cells stabilizes the supersonic diffusion combustion of the hydrogen microjet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Grek, V. V. Kozlov, and Yu. A. Litvinenko, Textbook (Novosib. gos. un-t., Novosibirsk, 2012) [in Russian].Google Scholar
  2. 2.
    M. Suzuki, S. Ikura, and W. Masuda, Proc. 11th Asian Symp. on Visualization (Niigata, Japan, 2011)Google Scholar
  3. 3.
    V. V. Kozlov, G. R. Grek, M. M. Katasonov, O. P. Korobeinichev, Yu. A. Litvinenko, and A. G. Shmakov, J. Flow Control, Measurement & Visualization (JFCMV) 3 (1), 108 (2013).CrossRefGoogle Scholar
  4. 4.
    M. S. Krivokorytov, V. V. Golub, and V. V. Volodin, Pis’ma Zh. Tekh. Fiz. 38 (10), 57 (2013).Google Scholar
  5. 5.
    G. R. Grek, M. M. Katasonov, V. V. Kozlov, O. P. Korobeinichev, Yu. A. Litvinenko, and A. G. Shmakov, Vestnik NGU. Seriya: Fizika 8 (3), 98 (2013).Google Scholar
  6. 6.
    V. V. Kozlov, G. R. Grek, M. M. Katasonov, O. P. Korobeinichev, Yu. A. Litvinenko, and A. G. Shmakov, Dokl. Phys. 59 (12), 596 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Kozlov, G. R. Grek, and Yu. A. Litvinenko, Visualization of Conventional and Combusting Subsonic Jet Instabilities (Springer-book, Dordrecht, 2015).Google Scholar
  8. 8.
    V. V. Kozlov, G. R. Grek, O. P. Korobeinichev, Yu. A. Litvinenko, and A. G. Shmakov, Vestnik NGU. Seriya: Fizika 9 (1), 79 (2014).Google Scholar
  9. 9.
    A. G. Shmakov, G. R. Grek, V. V. Kozlov, O. P. Korobeinichev, and Yu. A. Litvinenko, Vestnik NGU. Seriya: Fizika 10 (2), 27 (2015).Google Scholar
  10. 10.
    V. V. Kozlov, G. R. Grek, O. P. Korobeinichev, Yu. A. Litvinenko, and A. G. Shmakov, Intern. J. Hydrogen Energy 41 (44), 20231 (2016).CrossRefGoogle Scholar
  11. 11.
    Yu. A. Litvinenko, G. R. Grek, V. V. Kozlov, O. P. Korobeinichev, and A. G. Shmakov, Vestnik NGU. Seriya: Fizika 10 (2), 52 (2015).Google Scholar
  12. 12.
    G. R. Grek, M. M. Katasonov, G. V. Kozlov, and M. V. Litvinenko, Vestnik NGU. Seriya: Fizika 10 (2), 42 (2015).Google Scholar
  13. 13.
    V. V. Kozlov, G. R. Grek, O. P. Korobeinichev, Yu. A. Litvinenko, and A. G. Shmakov, Intern. J. Hydrogen Energy 41 (44), 20240 (2016).CrossRefGoogle Scholar
  14. 14.
    A. G. Shmakov, G. R. Grek, V. V. Kozlov, and Yu. A. Litvinenko, Intern. J. Hydrogen Energy 42 (24), 15913 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Kozlov
    • 1
    • 3
  • A. G. Shmakov
    • 2
    • 3
  • G. R. Grek
    • 1
  • G. V. Kozlov
    • 1
  • Yu. A. Litvinenko
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied MechanicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Voevodsky Institute of Chemical Kinetics and CombustionSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations