Advertisement

Doklady Physics

, Volume 63, Issue 4, pp 158–160 | Cite as

Modeling of Gas Flow through a Granular Bed of a Thermal Storage Phase-Change Material

  • V. A. Levin
  • N. A. Lutsenko
  • S. S. Fetsov
Mechanics
  • 19 Downloads

Abstract

A mathematical model and a numerical method for description of time-dependent gas flows through granular thermal storage phase-change materials (PCMs) have been proposed. Such granular PCMs are modeled as porous solid–solid phase-change media using the methods of heterogeneous continuum mechanics without detailing the processes inside individual particles. The calculation results are compared with the experimental measurements to show their good agreement with each other.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Luo, J. Wang, M. Dooner, and J. Clarke, Appl. Energy 137, 511 (2015).CrossRefGoogle Scholar
  2. 2.
    G. G. Ol’khovskii, V. A. Kazaryan, and A. Ya. Stolyarevskii, Compressed-Air Power Stations (IKI, Izhevsk, 2011) [in Russian].Google Scholar
  3. 3.
    G. Venkataramani, P. Parankusam, V. Ramalingam, and J. Wang, Renewable Sustainable Energy Rev. 62, 895 (2016).CrossRefGoogle Scholar
  4. 4.
    R. I. Nigmatulin, Principles of the Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].Google Scholar
  5. 5.
    A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer (Editorial URSS, Moscow, 2003) [in Russian].Google Scholar
  6. 6.
    N. A. Avdonin, Mathematical Description of Crystallization Processes (Zinatne, Riga, 1980) [in Russian].zbMATHGoogle Scholar
  7. 7.
    V. R. Voller, M. Cross, and N. C. Markatos, Int. J. Numer. Methods Eng. 24 (1), 271 (1987).CrossRefGoogle Scholar
  8. 8.
    V. M. Entov, A. M. Maksimov, and G. G. Tsypkin, Dokl. Akad. Nauk 288 (3), 621 (1986).Google Scholar
  9. 9.
    V. T. Borisov, Dokl. Akad. Nauk 136 (3), 583 (1961).Google Scholar
  10. 10.
    D. V. Aleksandrov, Dokl. Akad. Nauk 375 (2), 172 (2000).Google Scholar
  11. 11.
    V. A. Levin and N. A. Lutsenko, Math. Models Comput. Simul. 2 (5), 635 (2010).CrossRefGoogle Scholar
  12. 12.
    N. A. Lutsenko, Vychisl. Mekh. Sploshnykh Sred 9 (3), 331 (2016).Google Scholar
  13. 13.
    Yu. S. Teplitskii and A. R. Roslik, J. Eng. Phys. Thermophys. 88 (6), 1341 (2015).CrossRefGoogle Scholar
  14. 14.
    M. Rady, Appl. Therm. Eng. 29 (14), 3149 (2009).CrossRefGoogle Scholar
  15. 15.
    M. A. Izquierdo-Barrientos, C. Sobrino, and J. A. Almendros-Ibáñez, Chem. Eng. J. 230, 573 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Levin
    • 1
    • 2
  • N. A. Lutsenko
    • 1
    • 3
  • S. S. Fetsov
    • 1
    • 3
  1. 1.Institute of Automation and Control Processes, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Research Institute of MechanicsMoscow State UniversityMoscowRussia
  3. 3.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations