Satellite Monitoring of Wildfires and Emissions into the Atmosphere of Combustion Products in Russia: Relation to Atmospheric Blockings


Using satellite and reanalysis data, estimates of the significant relationship between the wildfire areas and associated pyrogenic emissions of combustion products with atmospheric blocking events in Russia for the period from 2001 to 2019 were found. It has been established that the contribution to the variance of interannual changes of the wildfire areas and emissions of combustion products into the atmosphere associated with atmospheric blocking can reach and even exceed 40%. The tendency toward an increase in the density of emissions of combustion products into the atmosphere, including carbon dioxide and carbon monoxide, as well as fine aerosol, against the background of a general decrease in the areas of natural fires in the first 20 years of the 21st century, is revealed. At the same time, a decrease in the ratio of pyrogenic emissions of carbon monoxide and fine aerosol was found.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    A. Z. Shvidenko, D. G. Shchepashchenko, E. A. Vaganov, A. I. Sukhinin, Sh. Sh. Maksyutov, I. McCallum, and I. P. Lakyda, Dokl. Earth Sci. 441 (2), 1678–1683 (2011).

    Article  Google Scholar 

  2. 2

    S. A. Sitnov and I. I. Mokhov, Izv., Atmos. Ocean. Phys. 54 (9), 966–978 (2018).

  3. 3

    Izv., Atmos. Ocean. Phys. 47 (9), 1039–1048 (2011).

  4. 4

    Izv., Atmos. Ocean. Phys. 52 (9), 1078–1091 (2016).

  5. 5

    V. G. Bondur and A. S. Ginzburg, Dokl. Earth Sci. 466 (4), 148–152 (2016).

    Article  Google Scholar 

  6. 6

    V. G. Bondur, K. A. Gordo, and V. L. Kladov, Izv., Atmos. Ocean. Phys. 53 (9), 859–874. (2017).

  7. 7

    I. I. Mokhov, A. V. Chernokulsky, and I. M. Shkolnik, Dokl. Earth Sci. 411A (9), 1485–1489 (2006).

    Article  Google Scholar 

  8. 8

    V. G. Bondur, I. I. Mokhov, O. S. Voronova, and S. A. Sitnov, Dokl. Earth Sci. 492 (1), 370–375 (2020).

    Article  Google Scholar 

  9. 9

    I. I. Mokhov and A. V. Timazhev, Russ. Meteorol. Hydrol. 44 (6), 369–377 (2019).

    Article  Google Scholar 

  10. 10

    I. I. Mokhov, Izv., Atmos. Ocean. Phys. 56 (4), 325–343 (2020).

    Article  Google Scholar 

  11. 11

    V. G. Bondur, O. S. Voronova, E. V. Cherepanova, M. N. Tsidilina, and A. L. Zima, Issled. Zemli Kosmosa, No. 4, 3–17 (2020).

    Article  Google Scholar 

  12. 12

    L. Giglio, W. Schroeder, and C. O. Justice, Remote Sens. Environ. 178, 31–41 (2010).

    Article  Google Scholar 

  13. 13

    M. A. Friedl, D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, Remote Sens. Environ. 114, 168–182 (2010).

    Article  Google Scholar 

  14. 14

    W. Seiler and P. J. Crutzen, Clim. Change 2 (3), 207–247 (1980).

    Article  Google Scholar 

  15. 15

    S. Tibaldi and F. Molteni, Tellus A 42, 343–365 (1990).

Download references


This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of grant agreement no. 075-15-2020-776. The analysis of the features of blocking activity was carried out within the framework of the Russian Science Foundation, project no. 19-17-00240.

Author information



Corresponding author

Correspondence to Academician I. I. Mokhov.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I., Bondur, V.G., Sitnov, S.A. et al. Satellite Monitoring of Wildfires and Emissions into the Atmosphere of Combustion Products in Russia: Relation to Atmospheric Blockings. Dokl. Earth Sc. 495, 921–924 (2020).

Download citation


  • satellite monitoring
  • remote sensing
  • wildfires
  • pyrogenic emissions
  • atmospheric blocking
  • climate changes